
The RPC�Memory Case Study� A Synopsis �

Manfred Broy� Stephan Merz� and Katharina Spies

Institut f�ur Informatik� Technische Universit�at M�unchen
Arcisstr� ��� ����� M�unchen� Germany

� About this Book

The RPC�Memory speci�cation problem was proposed by Broy and Lamport
as a case study in the formal design of distributed and concurrent systems� The
idea was to use it as a basis for comparing various approaches to formal speci�ca�
tion� re�nement� and veri�cation� Various preliminary solutions were presented
and discussed during a workshop at Schloss Dagstuhl� Germany� in September
����� Authors were then given the opportunity to revise their speci�cations to
re�ect the discussions at the seminar� An extensive refereeing process ensured
and authors were encouraged to discuss their solutions with the referees�

This volume contains �fteen solutions to the RPC�Memory problem that
resulted from this process� The formalisms that underly the speci�cations re�
�ect di�erent schools of system speci�cation� including Petri nets� temporal
and higher�order logics� various formats of transition systems or automata� and
stream�based approaches� supporting various degrees of formalized or computer�
assisted veri�cation� The contributors were free to solve only those aspects of
the problem that they considered particularly important or omit aspects that
could not be adequately represented in the chosen formalism�

Section 	 of this introductory overview reviews the speci�cation problem�
discussing its structure and the problems posed to the participants� In section 

we attempt to classify the solutions contained in this volume� We indicate which
parts of the problem have been addressed and what we believe to be the key
points of each solution� This would have been impossible without the help of
the referees who supplied us with excellent overviews and appraisals� In fact�
this section contains literal quotes from the referee reports� and we would like
to think of our contribution as mostly redactorial� trying to ensure a common
format and uniform criteria of classi�cation� In order to maintain the anonymity
of the individual referees� we do not attribute the quotes we make� A list of all
referees involved in the edition of this volume is included separately� We conclude
in section � with a summary of some of the lessons that we have learned from
this case study�

This article does not attempt to provide an in�depth analysis of the solutions
to the case study� because we have contributed solutions ourselves it would
have been di�cult to ensure a truly impartial assessment of the other contribu�
tions� Besides� such an analysis would have taken more time and energy than

� This work was partially sponsored by the Sonderforschungsbereich �	� 
Werkzeuge
und Methoden f�ur die Nutzung paralleler Rechnerarchitekturen�



�

we were prepared to expend� Nevertheless� we hope that our classi�cation can
be helpful to researchers and even practicing software engineers who try to ap�
ply formal methods to concrete problems� and can perhaps even indicate links
between formal methods developed from di�erent theoretical backgrounds� On
the other hand� we are aware that our subjective backgrounds and predilec�
tions have in�uenced the presentation of the contributions in this overview� Any
misrepresentations are entirely our fault�

� The Problem

This section reviews the speci�cation problem� reproduced on pages �
� of this
volume� and highlights key issues that the contributions were expected to ad�
dress�

The problem calls for the speci�cation of a series of components� The prob�
lem statement begins with a description of the procedure interface employed
by all components� Each component is required to accept concurrent calls from
di�erent client processes� although there can be at most one outstanding call
per process to facilitate identi�cation of return values� Speci�cation methods
that emphasize modularity could be expected to give a separate speci�cation
of the interface behavior and reuse that speci�cation in subsequent component
speci�cations�

Next� the problem statement describes the individual components and poses
�ve speci�c problems�

�� The �rst problem calls for the speci�cation of a memory component that
accepts Read and Write calls with appropriate parameters� The problem re�
quires the memory to behave as if it consisted of an array of memory cells for
which atomic read and write operations are de�ned� These atomic operations
may fail and may be retried by the memory� hence a call to the memory may
lead to the execution of several atomic read and write operations� Alterna�
tively� the memory may raise the exception MemFailure� indicating that the
operation may not have succeeded� �An unsuccessful Write operation may
still have caused a successful atomic write to the memory�� Most contrib�
utors understood the wording of the informal description as a description
of the externally visible memory behavior �as suggested by the phrase �as
if��� not the actual memory operation� Speci�cally� the informal description
explicitly stated the possibility of retries only for Write calls� whereas an
external observer may be able to tell that a Write call has ben retried if
there are concurrent Read calls for the same location� an observer will only
be able to witness the e�ect of the last atomic read in response to a Read

call� This issue has nevertheless caused some controversy� because the mem�
ory implementation �problem 
� describes an explicit mechanism for retries
that allows several atomic reads in response to a Read call of the memory
component� The solutions by Best� Romijn� and Hooman include a formal
proof of the �observational� equivalence of the �single�atomic�read� and the



�

Memory

Clerk

RPC

Component

Reliable

Memory

Fig� �� Implementation of the memory component

�multiple�atomic�read� behaviors� whereas Larsen� Ste�en� and Weise con�
sider the problem statement to be �awed in this respect�
The �rst problem also introduces two variants of the memory component�

� the reliable memory component� which never returns a failure exception
� the ever�failing memory component� which always fails�

Participants were asked whether these variants are a valid implementation of
the original memory component� and� if so� why this is a reasonable assump�
tion� The solutions are unanimous in their answers� all regard both variants
as a valid implementation� The rationale to consider the ever�failing memory
an �unavoidable� implementation is that the speci�cation cannot rule out a
catastrophic failure of the memory� Several authors remark that probabilis�
tic approaches could be employed to distinguish a memory that never works
from one that fails only temporarily�

	� The second problem requires the speci�cation of an RPC �remote procedure
call� component� It o�ers a single RemoteCall procedure whose arguments
are a procedure name and a list of arguments to be passed on to a server�
If these arguments are �syntactically� correct� the RemoteCall is translated
to an appropriate call of the server� When the server replies� the result is
passed back to the client� However� there may also be failures� in which case
the RPC component issues an RPCFailure exception�


� The third problem asks for a formal proof of implementation of a memory
component by the con�guration of components shown in �gure �� A reliable
memory is combined with an RPC component� The memory clerk component
�that is only implicitly described in the problem statement� translates Read
and Write calls to appropriate calls of the RPC�s RemoteCall procedure and
translates RPCFailure exceptions to MemFailure exceptions� ensuring that
the implementation has the same interface as the memory component� The
clerk may also retry calls for which the RPC has signalled an RPCFailure

exception�
It was assumed that any formalism designed for the speci�cation of reactive
systems would support the implementation of a single component by three
components as indicated in �gure �� An important criterion was whether a
rigorous� possibly computer�assisted� proof could be provided in the chosen
framework�

�� The fourth problem describes a �lossy RPC� component� whose functional
behavior is similar to the RPC component� but that guarantees a certain
timing behavior� Speci�cally� it will both forward client calls to the server



�

and transmit results back to the client within � seconds from when it has
received the call or result� If the server does not respond� the lossy RPC
component may fail to return a result to the client�

�� Finally� the �fth problem asks to prove that the original RPC component is
implemented by a lossy RPC component and an auxiliary component �called
the RPC clerk in most solutions� that raises an RPCFailure exception when
more than 	� � � seconds have elapsed since the RemoteCall was received
from the client� assuming that the server always responds within � seconds�
This assumption is necessary because the RPC implementation is allowed
to return both an exceptional and a normal result if the server is too slow�
Abadi� Lamport� and Merz explain that the informal description of the lossy
RPC component and its clerk is problematic because it allows situations
where a client process sends a second request before the lossy RPC has
answered the �rst one� They suggest that it would have been sensible to
replace the handshaking protocol imposed by the procedure interface by a
protocol where a sender process can issue a new call after a certain timeout
period� Cuellar� Barnard� and Huber introduce a timeout action that causes
the lossy RPC component to forget a pending call�

� The Solutions

��� Criteria for Classi�cation

In tables � to 
 we have classi�ed the solutions to the RPC memory speci�cation
problem according to a number of criteria that we explain now� Thereafter we
give a short review for each solution�

Coverage This entry describes which subproblems have been addressed in the
solution�

Means of presentation Most formalisms rely on a textual presentation of
speci�cations as programs or formulas� sometimes even in machine�readable
formats� Some formalisms additionally or exclusively provide a graphical no�
tation for speci�cations� which may have a formal semantics or be purely
illustrative�

Modularity We call a speci�cation modular if it is subdivided into meaningful
parts that can be understood independently and can be reused in di�erent
contexts�

Properties vs� operational We indicate whether the formalism emphasizes
abstract� property�oriented descriptions of the interface or models speci�ca�
tions more operationally� for example using a programming notation� Typi�
cally� logic�based formalisms would fall under the �rst category� and process
algebra or transition systems would represent the second one� In fact� the
distinction is seldom clear�cut� �rstly� many formalisms support both forms
of speci�cation� secondly� even formalisms that are more oriented towards
operational speci�cations often require sophisticated liveness or fairness con�
straints� We indicate which speci�cation style has been used in the solution
of the RPC memory problem�



�

Solution� Coverage Means of Modularity Properties

authors �number� presentation vs� operational

Abadi� Lamport� ��� TLA formulas� yes operational

Merz ��� diagrams

Astesiano� ��� structured nat� lang�� yes rather

Reggio �	� algebraic spec� operational

Best ��� ��� annotated �timed� yes operational

Petri nets

Blom� ��� LTL formulas� yes mainly

Jonsson �
� �no proofs� diagrams operational

Broy ��� ��� predicates on yes property�

�no proof for �� streams oriented

Cuellar� Barnard� ��� Unity�like notation� yes operational

Huber ��� temporal logic

Gotzhein �
� �� short dis� temporal logic little �spec� property�

cussion of 	�� formulas of architecture� oriented

Hooman ��� ��� PVS theories yes property�

oriented

Hungar ��� ��� �incomplete timing diagrams� little property�

speci�cation� TL formulas� CSP oriented

Klarlund� Nielsen� ��� logic on strings� Fido no property�

Sunesen ���� system descriptions oriented

Kurki�Suonio ���� ��� TLA formulas� yes operational

diagrams

Larsen� Ste�en� ��� transition systems� little mainly

Weise ��	� diagrams �spec� patterns� operational

Romijn ���� ��� I�O automata yes operational

St�len ��
� ��� predicates on yes property�

streams oriented

Udink� Kok ���� ��� Unity�like programs yes operational

Table �� Classi�cation of solutions

Hiding Formalisms that �mostly� rely on building an operational model of the
speci�ed system require a way to hide state components that are only in�
troduced as auxiliary constructs to describe the model in order to avoid
overspeci�cation� This category indicates the presence of a hiding operator
in the speci�cation language� It does not apply to property�oriented speci��
cation formats�

Environment vs� component Some formalisms advocate a separation of en�
vironment and component speci�cations� for example to obtain an open�
system speci�cation� Other formalisms specify the overall behavior of the
system together with its environment�

Stepwise re�nement A few solutions indicate how the implementations de�
scribed in the problem statement could have been derived from the abstract
speci�cation in a succession of re�nement steps� sometimes presented as a
succession of classes in an object�oriented development style� Although step�



��

Solution� Hiding Environment Stepwise Decomposition

authors �number� vs� component re�nement

Abadi� Lamport� existential separate no yes �but not

Merz ��� quanti�cation �nite�state�

Astesiano� no �but �implemen� mixed yes no

Reggio �	� tation function��

Best ��� restriction no environment yes no

operator assumptions

Blom� existential mixed no yes �but not

Jonsson �
� quanti�cation �nite�state�

Broy ��� not applicable separate �ass�� partly no

commitment style�

Cuellar� Barnard� visibility separate no yes ��nite

Huber ��� annotations state�

Gotzhein �
� not applicable mixed only high�level no

speci�cation

Hooman ��� not applicable separate no no

Hungar ��� not applicable separate �ass�� no yes

commitment style�

Klarlund� Nielsen� �hand�coded� mixed no yes

Sunesen ���� in the proof

Kurki�Suonio ���� no no object� no

oriented reuse

Larsen� Ste�en� restriction mixed speci�cation yes ��nite�

Weise ��	� operator patterns state�

Romijn ���� external vs� syntactic no yes �but not

internal actions distinction �nite�state�

St�len ��
� yes �existentially input� output yes no

quanti�ed oracles� streams

Udink� Kok ���� local variables mixed yes no

Table �� Classi�cation of solutions 
continued�

wise re�nement was not required in the RPC memory case study� we include
this feature in the table�

Decomposition We indicate whether the component speci�cations have been
further decomposed into several �lightweight� and largely independent pro�
cesses� For example� the memory can be described as an array of memory
cells that function uniformly� Similarly� all client processes may be treated
in the same way by the components� Decomposition may help in the re�ne�
ment proofs� it is a necessary prerequisite for those approaches that rely on
model�checking a �nite�state abstraction of the system�

Style of proof Proofs can be presented in various degrees of formalization�
Informal� textbook�style proofs typically contain arguments about the oper�
ational behavior of a system� More rigorous proofs rely on �mathematical�
�semantic� style of reasoning or are performed in a system of formal logic�
Finally� in the case of machine�checked proofs� we distinguish between the



��

Solution� Style Related

authors �number� of proof solutions

Abadi� Lamport� Merz ��� formal 
� ��� ��� �

Astesiano� Reggio �	� outline

Best ��� informal

Blom� Jonsson �
� no proofs �� ��

Broy ��� mathematical �
� ��

Cuellar� Barnard� Huber ��� model�checking �	� �� �

Gotzhein �
� no proofs

Hooman ��� interactive

Hungar ��� model�checking �� �	� 


Klarlund� Nielsen� Sunesen ���� decision procedure �� �� �	

Kurki�Suonio ���� informal outline �� ��

Larsen� Ste�en� model�checking� �� ��� �

Weise ��	� formal abstraction

Romijn ���� mathematical �

St�len ��
� mathematical �

Udink� Kok ���� outline �� ��

Table �� Classi�cation of solutions 
end�

use of automatic decision procedures such as model checking and interactive
theorem provers� Because all components are in�nite�state systems� model
checking can only be applied after building �nite�state abstractions of the
components�

Related solutions For each solution we indicate what we believe to be the
most closely related solutions�

��� Reviews of Individual Contributions

We list the individual solutions in alphabetical order� For each solution we give a
short summary and indicate what we believe are the most relevant issues raised
in the contributions� These sections are largely based on the referees� comments�
We are grateful for the permission to reprint excerpts from their evaluations�

Contribution � M� Abadi� L� Lamport� S� Merz� A TLA solution
The contribution presents a complete solution to the RPC�Memory speci�ca�
tion problem� The speci�cations are presented as modules in the speci�cation
language TLA�� which is based on the Temporal Logic of Actions �TLA�� The
concepts of TLA and TLA� required to understand the solution are explained
as they are used� Several aspects of the solution are illustrated with the help
of predicate�action diagrams� a graphical formalism whose semantics is given in
terms of TLA formulas� The modules of TLA� allow for reuse of speci�cations�
for example of the procedure interface speci�cation or of basic �data types� such
as sequences�



��

The logic TLA supports an operational style of speci�cation� but also pro�
vides temporal logic operators to express standard invariant and liveness prop�
erties� Syntactic restrictions on well�formed TLA formulas ensure that all for�
mulas are invariant under stuttering� hence the implementation relation can
be expressed as logical implication� Existential quanti�cation over state vari�
ables corresponds to hiding of internal state components� The authors give sep�
arate speci�cations of the environment and the components and indicate how
one would write assumption�guarantee speci�cations� A non�interleaving style
of speci�cation helps to decompose the speci�cations into pieces of manageable
complexity� which simpli�es the veri�cation tasks� The proofs are formal� based
on the logical rules of TLA� Re�nement mappings and history variables are used
in the proofs of existentially quanti�ed formulas� Proof outlines appear in the
paper� the complete proofs are available separately� No machine assistance has
been used in veri�cation�

Related solutions include the DisCo approach presented in solution �� by
R� Kurki�Suonio� whose semantics is based on TLA� The TLT formalism of so�
lution � by J� Cuellar� D� Barnard� and M� Huber has some similarity with TLA�
Solution � by J� Blom and B� Jonsson� although based on standard linear�time
temporal logic� uses a very similar structure of the speci�cation� as does solu�
tion �
 by J� Romijn� which is based on I�O automata�

Contribution � E� Astesiano� G� Reggio� A Dynamic Specification of
the RPC�Memory problem
The contribution covers problems � to 
 of the RPC�Memory problem� The main
interest of the authors has been to suggest a methodology for the transition from
a natural language description to a formal speci�cation� using an intermediate�
structured� informal speci�cation� In particular� the component to be developed
has to be delimited from its environment� The formal speci�cations are expressed
as a combination of algebraic speci�cations� labelled transition systems �also pre�
sented in an algebraic way�� and formulas of a CTL�like branching time temporal
logic� The composition of separate components does not rely on prede�ned op�
erators but is also speci�ed explicitly in an algebraic style� Every speci�cation
is accompanied by an informal part written in structured natural language that
explains the formal speci�cation� discusses its requirements� and lists �shadow
spots�� which represent inconsistencies or ambiguities in the informal document�

Re�nement steps may produce so�called design speci�cations that contain
only Horn clauses �and� in particular� no temporal logic formulas� and can be
simulated using a rapid�prototyping tool� The implementation of the memory
component by a system composed of a reliable memory� an RPC component�
and a memory clerk is presented as a single re�nement step� The paper contains
an outline of an implementation proof� the full proof is available as a technical
report�

The paper is unique in this volume in its emphasis on making the transition
from informal to formal speci�cations an explicit part of formal system develop�
ment� The authors emphasize the importance of validating an implementation
with the help of rapid prototyping� On the other hand� formal veri�cation ap�



��

pears to be less of a concern to the authors�
The formal basis of the approach is comparable to other contributions based

on transition systems such as contributions �
 by Romijn or �	 by Ste�en�
Larsen� and Weise�

Contribution � E� Best� A Memory Module Specification using Com�
posable High�level Petri Nets
This contribution covers all subproblems of the RPC�Memory speci�cation prob�
lem� Speci�cations are expressed in a formalism called M�nets that combines
annonated� high�level Petri nets with CCS�like composition operators such as
parallel composition� restriction� and synchronous events� A real�time extension
of M�nets is used for subproblems � and �� The formalism and its use are ex�
plained in the paper� The implementation relation is de�ned as the inclusion of
observable traces� The use of a common formalism for both speci�cations and
implementations facilitates stepwise re�nement as is illustrated in the paper�
the memory speci�cation is obtained by a series of re�nements that either add
requirements or allow additional behavior�

The formalism is largely based on graphical notation and employs operational
concepts that are rather intuitive� Decomposition into concurrent subsystems is
very natural with Petri nets� it also gives rise to an independence relation that
aids in proving an implementation correct� Annotations at places and transitions
are used to formulate constraints that cannot be conveniently expressed as a
Petri net� The paper indicates the veri�cation conditions necessary to prove the
implementation relation� Textbook�style� informal re�nement proofs are given in
the appendix�

Contribution � J� Blom� B� Jonsson� Constraint oriented temporal
logic specification
The contribution presents solutions to problems � to 
 of the RPC memory case
study� excluding proofs� The authors use standard temporal logic of linear time
�LTL� to specify the memory as a conjunction of constraints� each of which cap�
tures some aspect of the component�s behavior and is of manageable complexity�
This style of decomposition is facilitated by a non�interleaving model of the
system� at the cost of introducing some non�obvious fairness requirements� The
structure of the speci�cation suggests a particular system architecture where
di�erent components interact via synchronous events �similar to process alge�
bra� represented as �exible predicates� Each constraint is speci�ed in a largely
operational style� essentially as a transition system� Hiding of internal state com�
ponents is achieved by �exible quanti�cation of �exible variables� Parts of the
speci�cations are explained with the help of diagrams that provide a graphical
syntax for LTL formulas� The paper contains an outline of the topmost level of
a re�nement proof� but does not discuss its details�

Both the structure of the speci�cation and the formalism are quite similar
to contribution � by Abadi� Lamport� and Merz� Solution �
 by Romijn� which
is based on I�O automata instead of temporal logic� uses a similar structure�



��

Contribution � M� Broy� A Functional Solution to the RPC�Memo�
ry Specification Problem
The contribution presents assumption�commitment speci�cations of all subprob�
lems in the RPC�Memory case study� The speci�cations use a �black�box� per�
spective� describing the allowed input�output behavior of each component as a
relation on timed streams with the internal structure of components hidden� It is
shown that a complex speci�cation can be made understood with the help of ap�
propriately de�ned auxiliary symbols and predicates� each informal requirement
of the speci�cation problem is matched with a clause in the formal� stream�based
speci�cation� The paper contains a short introduction to the formalism� a more
detailed expos�e is given in the appendix together with an alternative� trace�based
speci�cation of the memory component�

The contribution emphasizes modularity of speci�cations� each requirement
can be understood independently from the others� This is possible because the
speci�cation expresses a relation between streams �i�e�� values� rather than vari�
ables or events �i�e�� names�� Modularity helps in verifying that the implemen�
tation is a re�nement of the high�level speci�cation� The necessary proofs con�
cerning problem 
 of the case study are given in the appendix�

The most closely related contribution is that by St�len ����� The contribu�
tion �� by Klarlund� Nielsen� and Sunesen is also based on a stream model� but
its internal structure is quite di�erent� motivated by the use of a formal �monadic
second�order� logic and the emphasis of associated decision procedures�

Contribution � J� Cuellar� D� Barnard� M� Huber� A Solution rely�
ing on the Model Checking of Boolean Transition Systems
This contribution addresses all parts of the RPC�Memory case study� Speci�ca�
tions are expressed in the language TLT �temporal logic of transitions�� which
combines a Unity�like programming notation with a temporal logic that bears
some resemblance to TLA� The formalism supports communication via shared
variables as well as synchronous communication� modelled as joint actions of the
environment and the component� Visibility annotations in variable declarations
serve to distinguish between state components of the environment and the com�
ponent� Assumptions about the behavior of the environment may be stated in
a special section of TLT modules� they give rise to veri�cation conditions when
modules are composed� The module system helps to break speci�cations into
manageable pieces� but has a rather complicated� non�compositional semantics�

The main emphasis in this solution is on abstraction and decomposition� It is
shown how a factorization technique can be used to reduce the implementation
proof to a �nite�state problem� which has reportedly been handled by the TLT
model checker� However� the paper is a little vague about the details of the actual
veri�cation� It is not clear whether the real�time implementation proof has been
handled by the model checker or not�

Contribution �	 by Ste�en� Larsen� Weise and contributionand � by Hungar
rely on similar abstraction techniques in the context of modal transition systems
and branching�time temporal logic� Also related is the paper �� by Klarlund�
Nielsen� and Sunesen in its use of automatic decision procedures in veri�cation�



�	

Udink and Kok �solution ��� base their contribution on a somewhat similar
variant of Unity� while the temporal logics used in solutions � by Abadi� Lamport�
Merz and � by Blom and Jonsson are related to the temporal logic part of TLT�

Contribution 	 R� Gotzhein� Applying a temporal logic
The paper presents a solution to problem � of the RPC�Memory case study and
discusses how the implementation of the memory �problems 	 and 
� could be
described and veri�ed� The author advocates an approach where behavior and
system architecture are speci�ed together and demonstrates how such a formal�
ism could be de�ned� The architecture is given as a network of agents� connected
through interaction points� The approach involves a notion of re�nement that al�
lows both agents and interaction points to be re�ned into more detailed networks�
The functional speci�cation of an agent is expressed as a property�oriented de�
scription of its behavior at the interface level� expressed as a list of temporal
logic formulas�

Rather than giving a �xed temporal logic� the author suggests to choose a
logic that is su�ciently expressive for the speci�cation problem at hand� For the
RPC�Memory problem he chooses a many�sorted �rst�order branching time logic
with operators to refer to the future� to the past� to actions� to the number of
actions� and to intervals� The speci�cation is expressed as one page of formulas
of this logic� The semantic de�nitions necessary to understand the speci�cation
are given in the paper�

Because it does not de�ne the memory implementation� the paper does not
include any proofs� although re�nement is discussed at a general level� The ex�
pressiveness of the logic leaves some doubts whether formal veri�cation would
actually be feasible� The memory speci�cation is already of worrisome complex�
ity� maybe indicating that a purely behavioral approach is not very well suited
for this kind of speci�cation problem�

Contribution 
 J� Hooman� Using PVS for an Assertional Verifica�
tion of the RPC�Memory Specification Problem
This contribution presents a complete solution of the RPC�Memory problem car�
ried out in an assertional framework developed over several years by the author�
All speci�cations and veri�cation conditions have been checked mechanically
with the help of the interactive theorem prover PVS �Prototype Veri�cation
System�� The author uses the higher�order logic of PVS to express properties
that are more conventionally expressed in some kind of temporal logic� The
framework and its support by PVS are explained in the article�

In this approach� speci�cations are expressed as assumption�commitment
pairs that de�ne a formal theory of the component�s behavior in a well�behaved
environment� For the RPC�Memory problem� however� environment and com�
ponent are modelled as a single system� hence all environment assumptions are
trivial� The formalism is property�oriented� constraining the acceptable behav�
iors �sequences of events� at the interface level� The contribution shows that
machine�checked �although not automatic� veri�cation of the RPC�Memory sys�
tem is possible even without decomposition of the component speci�cations into
�lightweight� processes�



��

The contribution is unique both in the theoretical underpinnings of the as�
sertional approach it uses and in the use of an interactive theorem prover as a
tool to write speci�cations and prove theorems about them�

Contribution � H� Hungar� Specification and Verification Using a
Visual Formalism on Top of Temporal Logic
This contribution covers problems � to 
 of the RPC�Memory case study� Tech�
nically� speci�cations are expressed in an assumption�commitment variant of
the branching�time temporal logic CTL� using a property�oriented speci�cation
style� The speci�cations are expressed with the help of symbolic timing diagrams
�STDs�� whose formal semantics is given by a translation to CTL� However� with
some practice� STDs can be understood intuitively� Both the logic and the dia�
grams are introduced in the paper to the extent necessary to be able to read the
speci�cations� The author has� in his own words� mainly been concerned with
�the formal veri�cation of key properties of a design� �� � � � less emphasis �has
been� put on issues like completeness of the speci�cation�� In fact� he gives an
example of a run that satis�es the speci�cation� but does not conform to the in�
formal memory speci�cation� He argues that such behaviors are too pathological
to occur in any realistic implementation�

The paper also includes CSP�like programs for the memory� RPC� and mem�
ory clerk components and explains techniques such as decomposition� abstrac�
tion� and model checking to verify such programs against CTL speci�cations�
Part of the veri�cations required for the RPC�Memory problem has reportedly
been performed with the help of automatic tools developed at the University of
Oldenburg� although no details of the veri�cation are given in the paper�

The use of abstraction and model�checking is similar to the frameworks used
in contribution � by Cuellar� Barnard� and Huber and contribution �	 by Larsen�
Ste�en� and Weise� Contribution � by Gotzhein is another solution that relies
on property�oriented temporal�logic speci�cations�

Contribution �� N� Klarlund� M� Nielsen� K� Sunesen� A Case Study
in Verification Based on Trace Abstractions
The paper addresses problems � to 
 of the RPC�Memory speci�cation problem
using behavioral component speci�cations expressed in a monadic second�order
logic over �nite strings� which allows to specify the safety part of the speci��
cations� The system description language Fido provides a high�level notation
that can be translated into formulas of the target logic� The veri�cation part is
carried out with the help of an automatic decision procedure called MONA�

The emphasis in this solution is on the availability of an automatic decision
procedure for the considered logic� In particular� all theorems have been checked
by the MONA tool� However� the correctness of the underlying abstractions to
�nite�state systems is left implicit in the paper �strictly speaking� only a �nite�
state instance of the problem has actually been veri�ed�� The implementation
relation is de�ned as inclusion of observable traces� where the notion of observ�
ability is de�ned by the user as appropriate for the problem at hand� For the
present case study� the authors notice that atomic reads should not be made
observable unless a Read call to the memory may induce several atomic reads�



��

The paper is related to the solutions � by Cuellar� Barnard� and Huber�
� by Hungar� and �	 by Larsen� Ste�en� and Weise in its use of �nite�state
abstractions to perform automatic veri�cation� The semantic model is related
to the stream model used in the solutions � by Broy and �� by St�len� but is
restricted to safety properties�

Contribution �� R� Kurki�Suonio� Incremental Specification with
Joint Actions� The RPC�Memory Specification Problem
The contribution covers all aspects of the RPC�Memory case study� The solution
is developed in an object�oriented fashion that emphasizes the reuse of subcom�
ponents and basic patterns of interactions� The computational model is based
on the synchronization of environment and component via joint actions� The se�
mantic basis for the formalism is Lamport�s Temporal Logic of Actions �TLA��
with some additional ideas from Back�s re�nement calculus� The method is sup�
ported by prototyping tools that animate speci�cations� However� the aspect of
tool support is not discussed in this paper�

The speci�cations are presented as a succession of class and action de��
nitions� presented as TLA formulas� Several diagrams� including state charts�
provide additional explanation� although they are not given a semantics of their
own� The emphasis in this approach is on modularity� Certain restrictions on
the allowed modi�cations of an action in a subclass ensure that safety properties
of a class are inherited by subclasses� at least for the untimed part� Each class
de�nition can be understood as de�ning an automaton that is further re�ned
in subclasses� The lack of distinction between external and internal state com�
ponents and between environment assumptions and component commitments is
justi�ed by the emphasis on producing models rather than abstract speci�ca�
tions� The method does however provide the vehicle of �ghost variables� that
allows state variables of a superclass to be eliminated in a subclass when they
are no longer needed� The approach favors the development of an implemen�
tation by stepwise re�nement where correctness �at least for safety properties�
is guaranteed by construction� For the present case study� the implementation
consists of components that have been developed separately� so there is a need
for separate correctness proofs� The paper includes informal arguments why the
implementation is correct and shows how these could be turned into formal TLA
proofs of implementation�

Solution � by Abadi� Lamport� and Merz is related in its use of TLA as
its semantic basis� The speci�cation language contains ideas similar to those
underlying Unity and TLT �see contributions �� by Udink and Kok and � by
Cuellar� Barnard� and Huber��

Contribution �� K� Larsen� B� Steffen� C� Weise� The methodology
of modal constraints
The contribution addresses all subproblems of the case study� except that no
liveness properties are speci�ed� The speci�cations are written as modal tran�
sition systems� which add a distinction between �may� and �must� transitions
and a form of conjunction to constructs from process algebras such as CCS� re�
sulting in an interesting mix of operational and property�oriented speci�cation



��

styles� The underlying theory is explained to the extent necessary to understand
the solution�

The individual speci�cations are expressed in the form of transition dia�
grams that reuse a number of basic patterns� The speci�cation is decomposed
into �ne�grained speci�cations that concern individual memory locations� client
processes� and memory values� This decomposition together with an abstraction
step allows for the use of a model checker for veri�cation� which has reportedly
been performed using the TAV tool developed by the authors� The price to pay
is a highly complex structure of the speci�cation� It was not clear to the referees
whether the speci�cation actually conforms to the informal description or not�
In particular� modelling the dependency between write and read actions turned
out to be non�trivial and resulted in a complex transition system�

The paper is related to solution � by Cuellar� Barnard� and Huber� solution �
by Hungar� and solution �� by Klarlund� Nielsen� and Sunesen in its use of �nite�
state abstractions and model checking�

Contribution �� J� Romijn� Tackling the RPC�Memory Specification
Problem with I�O automata
Romijn�s contribution gives solutions for all subproblems of the RPC�Memory
case study� The speci�cations are expressed in the framework of I�O automata
with fairness constraints� The timed part of the speci�cation problem required an
extension of the model of fair I�O automata� The distinction between internal�
external� and environment events is built into the semantics of I�O automata�
although it is noted in the paper that this �syntactic� distinction is not enough�
for example� to express the assumption that certain environment actions happen
within a speci�ed time bound�

Each component speci�cation is given as the composition of one I�O au�
tomaton per client process� The paper includes a statement of all veri�cation
conditions necessary to prove re�nement and sketches their proofs� including a
proof that a memory component that allows multiple atomic reads per Read

request cannot be distinguished from one that allows at most one atomic read�
An addendum to the contribution� which is available separately� contains the
complete proofs for all theorems in mathematical and partly formal �predicate
logic� style�

The structure of the speci�cations is similar to that of contributions � by
Abadi� Lamport� and Merz and � by Blom and Jonsson� although the semantic
basis is di�erent�

Contribution �� K� St�len� Using Relations on Streams to Solve
the RPC�Memory Specification Problem
The paper addresses all subproblems of the RPC�Memory case study� Compo�
nent speci�cations are expressed as relations between input and output streams�
which model communication histories of input and output channels� Composition
of speci�cations corresponds to the conjunction of the input�output relations� A
speci�cation re�nes another speci�cation if any input�output behavior of the for�
mer is also an input�output behavior of the latter� Thus� re�nement corresponds



��

to logical implication� The paper distinguishes between time�independent and
time�dependent speci�cations� A time�independent speci�cation is based on un�
timed streams� A time�dependent speci�cation employs timed streams and can
express timing constraints and causalities�

The paper deviates from the problem statement in that the handshake pro�
tocol is not imposed� This means for example that the user may send a new call
before the memory component issues a reply to the previous call by the same
user� An appendix shows how handshake communication can be introduced as
a re�nement�

The speci�cations are developed in several steps� starting from an unfailing
memory for one client process� The paper emphasizes the use of oracles to de�
scribe the time�independent nondeterministic behavior in a structured way� Es�
sentially� an oracle represents the nondeterministic choices made by the compo�
nent� it can be viewed as an additional� hidden input stream to the speci�cation
describing the functional component behavior� Constraints on oracles impose
fairness or compatibility requirements� The paper gives conventional mathemat�
ical proofs for the correctness of the implementation�

The contribution is related to solution � by Broy�

Contribution �� R� Udink� J�N� Kok� The RPC�Memory Specification
Problem� Unity � refinement calculus
The contribution covers subproblems � to 
 of the RPC�Memory case study� The
authors have extended the Unity speci�cation language with a module system
that provides local and global variables� On the logical level� they have added
concepts from the re�nement calculus developed by Back and Kurki�Suonio� The
individual speci�cations are given as modules in this Unity�like language�

The speci�cation style is operational� internal and external variables are dis�
tinguished by the module system� The method provides transformation rules that
preserve all temporal properties of programs� even when applied to a module in
isolation� The paper contains an outline of the necessary steps in the re�nement
proof for the memory component� The method is currently not supported by
interactive or automatic proof checkers�

The contribution is related to the solution � by Cuellar� Barnard� and Huber
in its use of a Unity�like framework� and to solution �� by Kurki�Suonio in its
emphasis on transformational derivation and its foundation in the action systems
formalism�

� Conclusion

Although we do not want to and cannot come to a �nal judgement� it is helpful to
draw some conclusions� Which of the contributions as solutions to the RPC case
study a reader may prefer� depends very much on taste and style� The idea of the
whole experiment was never to have Olympic Games in speci�cation� re�nement�
and veri�cation� However� it is worthwhile to draw some �nal conclusions�

First of all� it was very interesting to see how the choice of the individual
methods that were used to tackle the problem was often less important for the



��

quality of the �nal solutions than the modeling ideas of the speci�ers� Certainly�
the creativity and expertise� and of course also the routine of the person applying
a method� are more important for the result than the particular notation and
model used� Of course� there are methods and models which do not provide
certain helpful concepts and� therefore� make the life of the speci�er a little
harder� However� even plain predicate logic is a very powerful tool� and if a
method comprises �rst�order predicate logic or at least a su�cient fragment of
it� many ideas can be expressed� maybe less explicitly� but nevertheless they can
be made to work� This is certainly not surprising� It is like it is for programming
languages� a good programmer can write good quality programs even in a bad
programming language� and a bad programmer can write bad programs even in
a good programming language�

As a consequence of the observations we made above� it was interesting to see
how over the time working on the case study the authors of the contributions were
concentrating more and more on aspects of how to apply their methods� such
that theoretical questions became less and less important� This was certainly
what we expected and what we intended with the case study� The idea was to
stimulate researchers in that area to concentrate more on application issues and
less on maybe not so important theoretical aspects� This worked out perfectly�

Another thing which worked out very convincingly was the cross�refereeing
process� It showed that a very fruitful discussion was possible between propo�
nents of quite di�erent methods� Also here� the case study was a major con�
tribution to improving the understanding of researchers working in the �eld of
di�erent methods� And this is� �nally� what we would really like to achieve� to
make sure that researchers in that area look over the fence� respect the advan�
tages of other approaches� learn enough about them to be able to combine them
in such a way that it �nally leads to a comprehensive understanding of the �eld
and of how the methods can work together� such that we come step by step
closer to a practical application�

An aspect� very important for practical considerations� is the economy of a
method� How long does it take to learn it� how long does it take to use it for a
particular problem� Here our little experiment does not provide much input� We
think most of the methods around and also those used in this volume are not at
a stage where these questions can be tackled successfully�

Acknowledgements We gratefully acknowledge helpful comments by M� Abadi�
E� Best� L� Lamport� and K� St�len on previous versions of this paper�


