Verification of Compiler Correctness
for the WAM

Cornelia Pusch*

Fakultat fiir Informatik, Technische Universitdt Miinchen
80290 Miinchen, Germany

E-mail: pusch@informatik.tu-muenchen.de

Abstract. Relying on a derivation of the Warren Abstract Machine
(WAM) by stepwise refinement of Prolog models by Borger and Rosen-
zweig we present a formalization of an operational semantics for Prolog.
Then we develop four refinement steps towards the Warren Abstract
Machine (WAM). The correctness and completeness proofs for each step
have been elaborated with the theorem prover Isabelle using the logic
HOL.

1 Introduction

In the area of logic programming, Prolog ranks among the most prominent pro-
gramming languages. The development of efficient compilation techniques allows
the application of logic programming even in large-scale software development.
One of the main contributions to this field is due to D. Warren, having developed
a sophisticated compilation concept known as the Warren Abstract Machine
(WAM), which serves as basis for a large number of prolog implementations.

While Prolog benefits from a well-defined semantics derived from its logical
roots, the development of the WAM is not based on theoretical investigations,
correctness is in general "proved” by successful testing. For this reason, sev-
eral approaches have been made to develop a formal verification for the WAM
[Rus92], [BR94].

While in [Rus92], correctness is shown for a specific Prolog compiler trans-
lating Prolog programs into WAM code, [BR94] provides a correctness proof for
a whole class of compilers by formulating general compiler assumptions. The
specification of an operational semantics for Prolog is given in terms of evolv-
ing algebras, and a development of the WAM is given by stepwise refinement,
outlining the proofs for correctness and completeness of each refinement step.
However, the proofs are not complete, their description remains semi-formal.

A first attempt to check the proofs by machine was made with the theorem
proving system KIV [Sch95]. This case study revealed that the formal proofs
were significantly more involved than estimated by [BR94].

* Research supported by DFG grant Br 887/4-3, Deduktive Programmentwicklung

In our paper we present the formalization of the correctness proofs in the
Isabelle system [Pau94]. In contrast to the KIV formalization we do not use the
framework of evolving algebras. Our development starts from a slightly different
operational semantics for Prolog [DM88]. The operational semantics and all the
refinement steps towards the WAM considered so far are formalized in higher
order logic. The reasons for refraining from embedding the formalism of evolving
algebras are discussed in section 4.

The rest of this paper is structured as follows. Section 2 provides a short
introduction to Isabelle. In section 3 formalizations of the syntax and operational
semantics of Prolog are given. In section 4 the refinement steps towards the WAM
are elaborated. In section 5 the proof principles are discussed, and section 6
summarizes the results of the case study and outlines future work.

2 Isabelle

Isabelle is a generic theorem prover, where new logics are introduced by specify-
ing their syntax and rules of inference. Proof procedures can be expressed using
tactics and tacticals. A detailed introduction to the Isabelle system can be found
in [Pau94].

The formalization and proofs described in this paper are based on the in-
stantiation of Isabelle for higher order logic, called Isabelle/HOL.

The new release of Isabelle/HOL comes along with a graphical interface, al-
lowing the use of mathematical symbols like V and 3. Therefore, the presentation
of the formalization in this paper corresponds to the Isabelle input (except the
introduction of some abbreviations for better readability).

3 Prolog Syntax and Semantics

This section describes the syntactic categories of Prolog programs and their
formalization in Isabelle/HOL. Then we give an operational semantics by means
of inference rules. More detailed information about logic programming can be
found in [Apt90] and [L1o87].

3.1 Syntax

Since we do not have to reason about the exact structure of terms and formulae,
we start with the notions of predicates and atoms. Furthermore we do not deal
with the explicit construction of atoms by a predicate symbol followed by a list of
terms. We just assume the existence of types for predicates and atoms together
with a function returning the predicate symbol of an atom. Therefore, this part
of our formalization is not definitional:

types Pred
Atom
consts pname :: Atom = Pred

In logic programming syntax, a positive literal is an atom, a negative literal is
the negation of an atom, and a program clause is a set of literals, containing
exactly one positive literal, which is called the head. The remaining negative
literals are called the body of the clause. Finally, a logic program is a set of
program clauses.

However, these definitions are not suitable for the discussion of Prolog imple-
mentations. In order to describe the computational behavior of Prolog programs,
one usually considers specific depth-first search strategies (SLD-resolution) and
the use of the cut symbol, which is an impure but central control facility of Pro-
log. Therefore, we have to redefine the notions of literals and program clauses

as follows?: _
datatype Lit = Cut

| Atm Atom
types Clause = Atom x (Lit list)

In our terminologies a literal is either the cut symbol or an atom. This covers
the notion of a negative literal and introduces the cut symbol. A program clause
is a pair consisting of an atom (the head) and a list of literals (the body). This
definition ensures that the cut never occurs as the head of a clause. A logic
program is again a list of program clauses and a goal is a list of literals:

types Program = Clause list
Goal = Lit list

In the following we introduce the concepts of substitution, unification and
renaming. Since we abstracted away from terms and the construction of atoms we
cannot give complete definitions for these functions. However, this is not a severe
drawback as these concepts are well understood. Therefore we just axiomatize
some minimal properties essential to the further proofs.

Substitutions are represented by the type Subst coming along with the func-

tions
consts @subcomp :: Subst = Subst = Subst ("_ o ™)

@subapp :: Subst = Atom = Atom (”$”)

for composition and substitution application. The identifiers beginning with a
@ declare the names to be used just for the internal representation in Isabelle.
The user has to apply the names given in parentheses, where o is introduced as
infix operator. The function

consts mgu :: Atom = Atom = Result

returns the most general unifier of two atoms, if there is one, and a fail value
otherwise. This optional result value is modeled by defining an error monad:

datatype ‘a maybe = Ok 'a
| Fail
types Result = Subst maybe
2 The datatype construct generates axioms for free data types: injectiveness, distinct-

ness and an induction rule. The types construct is used here to introduce type
synonyms.

When selecting a clause for unification, all variables occuring in that clause
should be renamed, such that the so called variant does not have a variable
name in common with the original goal and the set of clauses already used in
the derivation process. The relevance of this renaming is discussed for example in
[Apt90]. As clauses are built up by an atom and a list of literals, it is convenient
to define an overloaded renaming function working on atoms and lists of literals.
Overloading of function symbols can be realized in Isabelle by introducing a new
type class, which is a subclass of the predefined class term of higher order terms:

classes renamecl < term

We then make Atom and Lit elements of renamecl. Furthermore we have to ensure
that application of the type constructor list to an element of class renamec! yields
an element of the same class:

arities Atom :: renamecl
Lit :: renamecl
list :: (renamecl)renamecl

The intention behind the renaming function is that it takes a value and a re-
naming index returning a value which is equal to the input up to the variable
names. By that each instance of a variable is made unique. As we will see later
the renaming index is increased by the interpreter function after each successfull
unification:

types Rename = nat
consts @rename :: ('a :: renamecl) = Rename = a :: renamecl 17

For the proofs carried out so far, we only needed the following basic properties
of the functions for substitution, unification and renaming:

rules pname al # pname a2 =—> mgu al a2 = Fail
pname (1 a vi) = pname a
pname ($ sub a) = pname a

The first axiom states that unification fails for two atoms with different pred-
icate symbols. The next two axioms express that renaming and substitution
application do not affect the predicate symbol of an atom.

3.2 Operational Semantics

The semantics of Prolog programs is usually given in terms of the model the-
ory of first order logic. Since this approach ignores the behavioral aspects of
Prolog like sequential depth-first search and the cut control facility, S. Debray
and P. Mishra developed a denotational as well as an equivalent operational
semantics expressing the properties of interest [DM88].

Hereafter we will give an operational semantics by the definition of an inter-
preter, which is almost identical to the one described in [DM88] with just some

slight modifications. In our approach we chose a different renaming function, ac-
cording to the formalization of Borger and Rosenzweig [BR94]. Furthermore we
considered just one single possible answer substitution (an extension to multiple
answer substitutions is under construction). Another difference consists in the
formalization of the interpreter function. In [DM88], the interpreter is defined
by a set of recursive equations. Because computation does not necessarily ter-
minate in Prolog programming, we have to deal with partial functions. Since
in Isabelle/HOL functions are total, we have to model partiality by inductive
relations.

The computation state of the interpreter is described by so called configurations.
A configuration consists of a list of clauses describing the Prolog program, a
computation stack storing different backtrack points, and a renaming index.
Therefore, we define:

types Config = Program x CStack x Rename

Each element of the computation stack consists of the substitution computed so
far, the goal still to be executed, and a list of candidate clauses that are yet to
be tried in solving the leftmost literal of the corresponding goal.

To model the effect of cuts in Prolog the goal is not presented linearly but
decomposed in a list of ”decorated” subgoals: each subgoal has to maintain its
own continuation information, which is just a part of the entire computation
stack. If a cut is encountered while processing a subgoal, the tail of the current
computation stack is replaced by the continuation stack stored along with the
subgoal. This corresponds to the deletion of all those backtrack points set up by
literals on the left of the cut as well as the backtrack point for the parent goal
(i.e. the goal which caused the clause containing the cut to be activated), which
is the usual Prolog semantics for cut. At the end of this section we will see an
example for this. Now we define the computation stack as:

datatype CStack = Es
| 7#+4” (Subst x (Goal x CStack)list x Clause list) CStack

(infixr70)
Now, we define an interpreter relation for Prolog programs:
consts interp0 :: (Config x Result)set
syntax @interp0 :: Config = Result = bool (- LN [0,95]95)
translations config -2 res == (config, res) € interp0

The interpreter relation interp0 is defined as a set of pairs. The syntax section

introduces an infix operator — for this relation, for which a translation into
the set representation is given. Note that the iy denotes the base interpreter. We
will refer to the interpreter after n refinement steps as i,.

We give an inductive definition of the interpreter — by means of inference
rules, where multiple premises are stacked on top of each. Note that the prede-
fined type of lists comes along with [] for the empty list and the infix operator

for list construction:

If the computation stack is empty, execution terminates returning a fail value:

query_failed -
(db, Es, vi) =% Fail

If the current list of decorated subgoals is empty, execution terminates returning
the current substitution:

query_success -
(db, (sub, [], cll)##sl,vi) —% Ok sub

If we are interested in all possible answer substitutions, execution has to be
continued by processing the tail sl of the stack.

If the first element of the current decorated subgoals list is empty, execution
continues by processing the rest of the decorated subgoals list:

(db7 (SUb’ d57 db)##SI,VI) i} res
(db, (sub, ([], ctp)#ds, cll)##sl, vi) —% res

goal_success

If the first subgoal of the current decorated subgoals list begins with a cut, the
tail of the computation stack is replaced by the continuation ctp of the current
subgoal:

(db, (sub, (Is, ctp)#ds, db)##ctp, vi) 20y res
(db, (sub, (Cuts#ls, ctp)#ds, cll)##sl, vi) —2 res

cut

All remaining rules hold for configurations, where the current decorated subgoals
list is not empty and the first subgoal does not start with a cut but with an atom.

If the current choice point contains no more candidate clauses, execution
proceeds by backtracking to the most recent choice point, i.e. popping the current
one from the computation stack:

(db, sl, vi) —25 res
(db, (sub, ((Atm x)#ls, ctp)#ds, [|)##sl, vi) % res

back

If the list of clauses still to be tried contains at least one element, two different
cases have to be considered:

If unification of the leftmost literal in the current subgoal with the head of
the first candidate clause fails, the next candidate clause has to be tried:

mgu($ sub x)(1 h vi) = Fail
(db, (sub, ((Atm x)#Is, ctp)#ds, cs)##sl, vi) % res
(db, (sub, ((Atm x)#ls, ctp)#ds, (h, b)#cs)##sl, vi) 0y res

atml

If unification succeeds with a substitution sub’, execution proceeds by extend-
ing the computation stack with a new choice point chp and incrementing the
renaming index:

mgu($ sub x)(1 h vi) = Ok sub’
(db, chp#+#(sub, ((Atm x)#ls, ctp)#ds, cs)##sl, vi+1) —% res
(db, (sub, ((Atm x)3#s, ctp)##ds, (h, b)gkcs) s, vi) =2 res

atm?2

where chp = (sub’ o sub, (1 b vi, sl)#(ls, ctp)#ds, db)

The new choice point chp contains an updated substitution, a subgoal list where
the unified atom is replaced by a new subgoal containing the body of the selected
clause, and the whole program serving as candidate clauses for the new subgoal.
The decoration of the new subgoal has to be set to the tail of the old computation
stack. In the old choice point, the selected clause has to be removed from the
list of untried clauses.

The formalization of inductive sets is supported in Isabelle/HOL by a special
package, where all generated rules are automatically proved as theorems.

Example 1 In the following we give a little example, to see how the inter-
preter works on the computation stack. The most interesting point is to see how
the list of decorated subgoals evolves. Therefore we omit in the representation
the substitutions and candidate clauses:

Consider the Prolog program

o:—p,X q:—s.
p:—aq,l,r q.
p. X .

and query o. Computation starts with an initial computation stack containing
the query decorated with an empty stack:

[([], Es)]

After some execution steps the computation stack looks as follows:

[([5]7 C2>7 <['7 r]: C1>7 <[X]v E5>v ([]7 E5>]
[([qa !7 r]) Cl>7 ([X]) E5>> <[]7 ES)]
[([P, X]: E5>v ([]7 ES)]

[([o], E5)]

[([P, X], E5>v ([]7 ES)]
[([o], &s)]

Since unification with s fails for all program clauses, the top element of the com-
putation stack is popped. The next clause to be tried for q succeeds immediately,

then we get:
[(['7 r]: C1>7 ([X]: ES): <[]7 E5>]
[([P, X]: E5>v ([]7 ES)]
[([o], E5)]

where ¢; = |[([o],Es)]| and c; =

Now a cut is encountered in the current subgoal. As described, the tail of the
computation stack is replaced by cy, which yields:

[(Ir], 1), ([, Es), (1], E5)]
[([o], Es)]

Unification with r fails for all program clauses, therefore backtracking has to be
executed. We see now that the remaining clause for p is no more considered,
according to the meaning of the cut.

4 Towards the WAM

The first Prolog compiler was developed at the University of Edinburgh by
D.H. Warren in 1977. The Warren Abstract Machine (WAM) is a refinement
of this system. Roughly speaking, the WAM is an abstract machine consisting of
a memory architecture and an instruction set tailored to Prolog. It is based on
the concept of a virtual machine in order to achieve portability to a wide range
of hardware configurations [Boi93]. In this paper, we do not describe the details
of the WAM, since we are just doing some refinement steps towards the WAM,
starting from our operational semantics presented in the previous section. For
more information the reader might refer to [AK91], which gives a more detailed
introduction to the WAM, rather than the original paper [War83].

In [BR94] Borger and Rosenzweig developed a methodical derivation of the
WAM starting from an operational semantics for Prolog. They provide a cor-
rectness proof for a whole class of compilers by formulating general compiler
assumptions. The specification of an operational semantics for Prolog is given
in terms of evolving algebras [Gur95]. Their development of the WAM is parti-
tioned into 12 refinement steps, each of which introduces a new aspect of the
WAM. For each step, they outline the proofs for correctness and completeness.
However, these proofs are not complete, their description remains semi-formal.

A first attempt to check the proofs by machine was made with the theorem
proving system KIV [Sch95]. This case study revealed that the formal proofs
were significantly more involved than estimated by [BR94|. For example, the
correctness proof of the first refinement step used an invariant property which
covered an entire page. Studying this proof, we got the impression that this
complexity is caused to a large extent by the formalism of evolving algebras.
For instance, the manipulation of inductive data structures seems to be quite
tedious. However, this concept turned out to be central to the formalization of
this case study. On the other hand higher order logic offers advanced features for
the treatment of inductive data structures. Therefore, we coded the operational
semantics directly in HOL as presented above and refrained from embedding the
formalism of evolving algebras.

Nevertheless, we could adopt the structure of the refinement steps developed
by Borger and Rosenzweig in [BR94] which turned out to be very suitable for
the realization of the proof task.

We now outline the steps of our development and present the formal definition
of the refined interpreter after the fourth step.

4.1 Introduction of pointers

Copying parts of the computation stack into the decorated subgoals list is very
inefficient. Therefore, the first improvement consists of replacing the copies by
pointers to the original stack, called cut points. Hence, we define:

types Index = nat
CArray = (Subst x (Goal x Index)list x Clause list)list

The type CArray replaces CStack in the configuration. Since the new stack defi-
nition no longer contains nested recursion, the definition of CArray can be based
on the predefined type of lists. We do not need to introduce a new data type. To
allow the deletion of choice points on the stack up to a given index, we provide
a function

consts ntail :: Index = CArray = CArray

which takes an index i and a computation stack, and returns the back end of the
stack of length i.

4.2 Optimizing the list of candidate clauses

Up to now, the list of candidate clauses for a new subgoal consists of the entire
program. However, it is clear that only some of the clauses are likely to match
the selected atom. Therefore, in a second step we restrict the set of candidate
clauses by a preselection depending on the currently selected atom. This is done
by a function

consts pdef :: Atom = Program = Clause list

which filters out those clauses from a given program whose heads consist of the
same predicate symbol as the currently selected atom. Additionally, the con-
figuration is extended by a new component which describes a triple of registers
holding the current values for substitution, decorated subgoals list and candidate
clause list. The computation stack is left to maintain the remaining backtracking
points.

4.3 Reusing choice points

During execution, it is often the case that information is popped from the stack
into the registers, and in a later stage, almost identical information is pushed
back onto the stack. This information transfer can be optimized by leaving the
formerly popped choice point on the stack and just changing part of its contents.
This is related to the well-known peephole optimization in compiler construction.

4.4 Deleting useless choice points

The next optimization step consists of deleting trivial choice points. This means
a choice points including an empty candidate clause list is no longer pushed onto
the stack: whenever execution returned to this point, it would be immediately
popped by backtracking.

4.5 The optimized interpreter model

After these four refinement steps, the formalization of the interpreter has under-
gone the following changes:

The configuration of our interpreter has been extended by two components.
The first one describes different modes of the computation. We distinguish four
modes: In call mode execution proceeds until an atom is encountered in the
current subgoal or computation terminates. In try mode a choice point is pushed
onto the computation stack. In enter mode unification is attempted, and in retry
mode reuse of choice points is done. The second extension is an index to the
computation stack, which stores the value of the current cut point. This cut
point register will be needed for the further development. We therefore define:

datatype Mode = Call | Try | Enter | Retry
types Regs = (Subst x (Goal x Index)list x Clause list)
Config = Program x CArray x Regs x Rename x Mode x Index

The inductive definition of the interpreter M, is as follows:

If the decorated goals register is empty, the query was successful, returning the
content of the substitution register as result:

query_success -
(db, arr, (sreg, [], creg), vi, Call,ct) — Ok sreg

If the first subgoal in the decorated subgoals register is empty, execution proceeds
the rest of the decorated goals list:

(db, arr, (sreg, ds, creg), vi, Call, ct) 45 res

goal_succes -
(db, arr, (sreg, ([], ctp)#ds, creg), vi, Call, ct) — res

If a cut is encountered, the backtracking stack is shortened upto the cut point
of the current subgoal:

cut (db, ntail ctp arr, (sreg, (Is, ctp)#tds, creg), vi, Call, ct) 14 res
u .
(db, arr, (sreg, (Cut#ls, ctp)#ds, creg), vi, Call, ct) — res

The following two rules hold for configurations, where the current subgoal begins
with an atom, but the predicate of the current atom is not defined. This is the
case, if the current atom does not occur in any head of a program clause.

If the backtracking stack is empty, computation fails:

pdef x db =]
(db, [], (sreg, ((Atm x)#ls, ctp)#ds, creg), vi, Call, ct) 4, Fail
If the backtracking stack is not empty, execution is processed in Retry mode:

pdef x db =]
(db, x#xs, (sreg, ((Atm x)#ls, ctp)#ds, creg), vi, Retry, ct) — res

calll

call2

(db, x#xs, (sreg, ((Atm x)#ls, ctp)#ds, creg), vi, Call, ct) —% res

If the definition of the current atom contains at least one clause, computation
continues with mode set to Try and the candidate clauses and cut point registers
updated:

pdef x db = c#cs

I3 (db, arr, (sreg, ((Atm x)#ls, ctp)#ds, c#cs), vi, Try, length arr) My res
ca

(db, arr, (sreg, ((Atm x)#ls, ctp)#ds, creg), vi, Call, ct) 5 res

If computation is in Try mode, two different cases have to be distinguished.

In the first case, the candidate clauses register contains at least two clauses,
one to be tried immediately and at least one to be pushed onto the stack. Then
execution proceeds in Enter mode with a new choice point pushed onto the stack:

trvl (db, (sreg, dreg, c2#cs)Ftarr, (sreg, dreg, c1#£c24£cs), vi, Enter, ct) My res
y

(db, arr, (sreg, dreg, c1#£c24cs), vi, Try, ct) 1y res

If there is only one candidate clause to be tried, no additional choice point has
to be stored on the stack:

try2 (db, arr, (sreg, dreg, [c]), vi, Enter, ct) My res

(db, arr, (sreg, dreg, [c]), vi, Try, ct) —= res

If unification fails in Enter mode, the result of the computation depends on the
contents of the backtracking stack.

If there are no more backtracking points, computation terminates returning
a fail value:

mgu($ sreg x)(T h vi) = Fail

enterl -
(db, [, (sreg, ((Atm x)#tls, ctp)#ds, (h, b)#cs), vi, Enter, ct) —% Fail

If the backtracking contains at least one element, computation is continued in
Retry mode :

mgu($ sreg x)(1 h vi) = Fail ’
(db, x#xs, (sreg, ((Atm x)#ls, ctp)#ds, (h, b)#cs), vi, Retry, ct) —% res

enter2 -
(db, x#xs, (sreg, ((Atm x)#ls, ctp)#ds, (h, b)#cs), vi, Enter, ct) —% res

If unification succeeds, execution proceeds in Call mode after updating the reg-
isters:

mgu($ sreg x)(T h vi) = Ok sub’
(db, arr, regs, vi+1, Call, ct) —% res
(db, arr, (sreg, ((Atm x)#ls, ctp)#ds, (h, b)#cs), vi, Enter, ct) 5 res

enter3

where regs = (sub’ o sreg, (1 b vi, sl)#(ls, ctp)#tds, (h, b)#cs)

In Retry mode, the information of the top level backtracking point is reused,
where two different cases have to be considered:

In the first case, the top level element contains more than one candidate
clauses. Then the backtrack information is loaded into the registers while the
candidate clauses list is updated in the top level stack element:

(db, (sub, dcl, c1#cs)#xs, (sub, dcl, c#£cl#tcs), vi, Enter, length xs) 4y res
(db, (sub, dcl, c#cl#cs)#xs, (sreg, dreg, creg), vi, Retry, ct) 45 res

retryl

If the backtracking point contains just one single clause still to be tried, the
backtrack information is loaded into the registers and the current top level stack
element is deleted:

retry2 (db, xs, (sub, dcl, [c]), vi, Enter, length xs) My res

(db, (sub, dcl, [C])#XS, (sreg, dreg, creg), vi, Retry, ct) &> res

Example 2 Now we will see how computation has changed in our example:
In addition to the computation stack there is now a register containing the
current, decorated subgoal list. In the initial state, the query is stored in the
register and the stack is empty. After some execution steps these components
look as follows:

(NDREOXID)
(DN EDACERID) RO

You may notice that the bottom stack element of the example in 3.2 does no
longer occur in this computation. This results of the fact that there exists just
one single program clause for o. After having tried it, it would be useless to
return to this point since the list of candidate clauses would be empty.

Since there is no program clause for s the information of the top level back-
tracking point is reused. There is just one clause still to be tried, therefore the
backtracking point is popped from the stack into the register:

(!, 11, 0), ([x], 0), {[1, 0)]] [(Ip, X102, ([], 0)]

Now a cut is encountered in the current subgoal which causes the backtracking
stack to be set to the empty stack:

([T, 00, ([x], 0), ([T, 0)]] [

Since there is no program clause for r, computation terminates returning Fail.

5 Proof principles

In a refinement step, a more concrete interpreter model is developed from an
abstract model. To establish a relationship between two different levels, we have
to define an abstraction function F, translating configurations of the concrete
interpreter to configurations of the abstract one.

We call an interpreter 1, a correct refinement of the interpreter i), if every
computation of — starting with an initial configuration terminates returning a
result res provided the computation of =% returns res starting with an equivalent
initial configuration. The notion of initial configuration is explained below.

A configuration of —% is a triple consisting of the Prolog program, a compu-
tation stack, and a renaming index. In an initial configuration, the computation
stack contains exactly one choicepoint, consisting of a substitution which is typ-
ically set to the identity map, a decorated subgoals list containing the goal to
be solved decorated by the empty stack, and a list of candidate clauses which is
typically set to the whole program. The initial configuration for — just differs
in the decoration of the goal, where now a pointer to the empty stack is held.

Application of the abstraction function F to'the initial configuration of —= re-
turns the equivalent initial configuration of —. The correctness theorem is then
formalized as follows:

((db, [(subst, [(goal, 0)], cll)], 0)~Lsres)

(F(db, [(subst, [(goal, 0)], cll)], 0)~Zsres)

Since this assertion cannot be proved directly, we have to show the validity
of a more general theorem, holding for any given configuration. The following
theorem can be proved by rule induction:

correctness

config_ok config

S config—2sres
il_implies_i0 I —
(F config)—>res
Here, we had to introduce an additional assumption. The predicate config_ok
restricts config to admissible configurations. One of the central proof tasks is
to find the right restrictions. For each refinement step, several attempts were
necessary to find the final solution.

Proving correctness is not sufficient to assure a really useful implementation.

We could implement —= by a never-halting function fulfilling the correctness
property. Therefore, we have to verify the completeness of the development step

as well, which assures that every solution computed by —= can be found by —:

(F(db, [(subst, [(goal, 0)], cll)], 0)—Z res)
((db, [(subst, [(goal, 0)], cll)], 0)~2sres)

Here again, a generalization of the theorem has to be proved:

completeness

config_ok config’
Fconfig' —%sres

i0_implies_il p
config’'—res

This technique of defining an abstraction function F and inductively proving
correctness and completeness by finding suitable restrictions was common to all
refinement steps considered so far.

6 Results and Future Work

The formalization and implementation of the proofs for four development steps
took seven months in total. The formalization in Isabelle comprises about 900
lines, the proofs for correctness and completeness consist of approximately 3500
user interactions. Although Isabelle offers a certain degree of automation, sig-
nificant parts of the proofs have to be guided by user interaction. Better proof
support by the system would facilitate the realization of complex case studies like
the present one. This concerns in particular an improvement of error messages
returned by the system.

As described, we decided to refrain from embedding the formalism of evolv-
ing algebras and coded the different refinement steps of an Prolog interpreter
directly in higher order logic. Because of this, we were able to make intensive
use of Isabelle’s features concerning the treatment of inductive data structures
and recursive concepts. The type class mechanism was profitably used for over-
loading. It is our opinion that the adaption of the formalization to higher order
logic simplified the complexity of the proof invariants to a large extent. Due to
that, we were able to conduct a large-scale case study like the present one: as far
as we know this is one of the biggest mechanized proofs concerning operational
semantics. In general this cannot be realized without careful decomposition of
the proof task. Here the adaption of the refinement steps developed by Borger
and Rosenzweig was essential to reduce the complexity of each step to a man-
ageable size.

Our next steps consist in extending our formalization to the computation of
multiple answer substitutions, which corresponds closer to a real Prolog inter-
preter. However, we do not think that proofs will become more complicated by
that.

Furthermore, the development steps towards the WAM not yet considered
remain to be done. The next refinement step introduces parts of the WAM
instruction set: the list of clauses defining a predicate is now translated by an
abstract compiler into a sequence of instructions that achieves the indexing of
the clauses together with its backtracking management [Boi93]. The proofs for
this step are presumed to be even more complex than the presented ones due to
the formalization of suitable compiler assumptions.

Acknowledgements I wish to thank Tobias Nipkow and Franz Regensburger
for helpful discussions and constructive criticism.

References

[AK91] Hassan Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction.
MIT Press, Cambridge, Massachusetts, 1991.

[Apt90] Krzysztof R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 10, pages 495-574. Elsevier Science
Publishers B.V., 1990.

[Boi93]

[BRO4]

[DMS8S]
[Gur95]
[L1087]

[Pau94]
[Rus92]

[Sch95]

Patrice Boizumault. The Implementation of Prolog. Princeton Series in Com-
puter Science. Princeton University Press, Princeton, New Jersey, 1993.

E. Bérger and D. Rosenzweig. The WAM - Definition and Compiler Cor-
rectness. In C. Beierle and L. Pliimer, editors, Logic Programming: Formal
Methods and Practical Applications. Elsevier, 1994.

Saumya K. Debray and Prateek Mishra. Denotational and Operational Se-
mantics for Prolog. J. Logic Programming, (5):61-91, 1988.

Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Borger, editor,
Specification and Validation Methods, pages 9-36. Oxford University Press,
1995.

J. W. Lloyd. Foundations of Logic Programming. Springer, 1987.

L.C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.
Springer, 1994.

David M. Russinoff. A Verified Prolog Compiler for the Warren Abstract
Machine. J. Logic Programming, (13):367-412, 1992.

G. Schellhorn. Von PROLOG zur WAM - Compilerverifikation mit KIV. Talk
at the annual meeting of the GI section ”Logic in Computer Science”, Karl-
sruhe, Juni 1995.

[War83] D. H. Warren. An Abstract Prolog Instruction Set. Technical Report 309,

SRI International, 1083.

This article was processed using the BTEX macro package with LLNCS style

