
Veri�cation of Compiler Correctness

for the WAM

Cornelia Pusch�

Fakult�at f�ur Informatik� Technische Universit�at M�unchen
����� M�unchen� Germany

E�mail� pusch�informatik	tu�muenchen	de

Abstract� Relying on a derivation of the Warren Abstract Machine

WAM� by stepwise re�nement of Prolog models by B�orger and Rosen�
zweig we present a formalization of an operational semantics for Prolog	
Then we develop four re�nement steps towards the Warren Abstract
Machine 
WAM�	 The correctness and completeness proofs for each step
have been elaborated with the theorem prover Isabelle using the logic
HOL	

� Introduction

In the area of logic programming� Prolog ranks among the most prominent pro�
gramming languages� The development of e�cient compilation techniques allows
the application of logic programming even in large�scale software development�
One of the main contributions to this �eld is due to D� Warren� having developed
a sophisticated compilation concept known as the Warren Abstract Machine
�WAM�� which serves as basis for a large number of prolog implementations�

While Prolog bene�ts from a well�de�ned semantics derived from its logical
roots� the development of the WAM is not based on theoretical investigations�
correctness is in general �proved� by successful testing� For this reason� sev�
eral approaches have been made to develop a formal veri�cation for the WAM
�Rus	
�� �BR	���

While in �Rus	
�� correctness is shown for a speci�c Prolog compiler trans�
lating Prolog programs into WAM code� �BR	�� provides a correctness proof for
a whole class of compilers by formulating general compiler assumptions� The
speci�cation of an operational semantics for Prolog is given in terms of evolv�

ing algebras� and a development of the WAM is given by stepwise re�nement�
outlining the proofs for correctness and completeness of each re�nement step�
However� the proofs are not complete� their description remains semi�formal�

A �rst attempt to check the proofs by machine was made with the theorem
proving system KIV �Sch	
�� This case study revealed that the formal proofs
were signi�cantly more involved than estimated by �BR	���

� Research supported by DFG grant Br ��
����� Deduktive Programmentwicklung



In our paper we present the formalization of the correctness proofs in the
Isabelle system �Pau	��� In contrast to the KIV formalization we do not use the
framework of evolving algebras� Our development starts from a slightly di�erent
operational semantics for Prolog �DM���� The operational semantics and all the
re�nement steps towards the WAM considered so far are formalized in higher
order logic� The reasons for refraining from embedding the formalism of evolving
algebras are discussed in section ��

The rest of this paper is structured as follows� Section 
 provides a short
introduction to Isabelle� In section � formalizations of the syntax and operational
semantics of Prolog are given� In section � the re�nement steps towards the WAM
are elaborated� In section 
 the proof principles are discussed� and section �
summarizes the results of the case study and outlines future work�

� Isabelle

Isabelle is a generic theorem prover� where new logics are introduced by specify�
ing their syntax and rules of inference� Proof procedures can be expressed using
tactics and tacticals� A detailed introduction to the Isabelle system can be found
in �Pau	���

The formalization and proofs described in this paper are based on the in�
stantiation of Isabelle for higher order logic� called Isabelle�HOL�

The new release of Isabelle�HOL comes along with a graphical interface� al�
lowing the use of mathematical symbols like � and �� Therefore� the presentation
of the formalization in this paper corresponds to the Isabelle input �except the
introduction of some abbreviations for better readability��

� Prolog Syntax and Semantics

This section describes the syntactic categories of Prolog programs and their
formalization in Isabelle�HOL� Then we give an operational semantics by means
of inference rules� More detailed information about logic programming can be
found in �Apt	�� and �Llo����

��� Syntax

Since we do not have to reason about the exact structure of terms and formulae�
we start with the notions of predicates and atoms� Furthermore we do not deal
with the explicit construction of atoms by a predicate symbol followed by a list of
terms� We just assume the existence of types for predicates and atoms together
with a function returning the predicate symbol of an atom� Therefore� this part
of our formalization is not de�nitional�

types Pred
Atom

consts pname �� Atom� Pred



In logic programming syntax� a positive literal is an atom� a negative literal is
the negation of an atom� and a program clause is a set of literals� containing
exactly one positive literal� which is called the head� The remaining negative
literals are called the body of the clause� Finally� a logic program is a set of
program clauses�

However� these de�nitions are not suitable for the discussion of Prolog imple�
mentations� In order to describe the computational behavior of Prolog programs�
one usually considers speci�c depth��rst search strategies �SLD�resolution� and
the use of the cut symbol� which is an impure but central control facility of Pro�
log� Therefore� we have to rede�ne the notions of literals and program clauses
as follows��

datatype Lit � Cut
j Atm Atom

types Clause � Atom� �Lit list�

In our terminologies a literal is either the cut symbol or an atom� This covers
the notion of a negative literal and introduces the cut symbol� A program clause
is a pair consisting of an atom �the head� and a list of literals �the body�� This
de�nition ensures that the cut never occurs as the head of a clause� A logic
program is again a list of program clauses and a goal is a list of literals�

types Program � Clause list
Goal � Lit list

In the following we introduce the concepts of substitution� uni�cation and
renaming� Since we abstracted away from terms and the construction of atoms we
cannot give complete de�nitions for these functions� However� this is not a severe
drawback as these concepts are well understood� Therefore we just axiomatize
some minimal properties essential to the further proofs�

Substitutions are represented by the type Subst coming along with the func�
tions

consts �subcomp �� Subst� Subst� Subst �� � ��
�subapp �� Subst� Atom� Atom �����

for composition and substitution application� The identi�ers beginning with a
� declare the names to be used just for the internal representation in Isabelle�
The user has to apply the names given in parentheses� where � is introduced as
in�x operator� The function

consts mgu �� Atom� Atom� Result

returns the most general uni�er of two atoms� if there is one� and a fail value
otherwise� This optional result value is modeled by de�ning an error monad�

datatype �a maybe � Ok �a
j Fail

types Result � Subst maybe

� The datatype construct generates axioms for free data types� injectiveness� distinct�
ness and an induction rule	 The types construct is used here to introduce type
synonyms	



When selecting a clause for uni�cation� all variables occuring in that clause
should be renamed� such that the so called variant does not have a variable
name in common with the original goal and the set of clauses already used in
the derivation process� The relevance of this renaming is discussed for example in
�Apt	��� As clauses are built up by an atom and a list of literals� it is convenient
to de�ne an overloaded renaming function working on atoms and lists of literals�
Overloading of function symbols can be realized in Isabelle by introducing a new
type class� which is a subclass of the prede�ned class term of higher order terms�

classes renamecl � term

We then make Atom and Lit elements of renamecl� Furthermore we have to ensure
that application of the type constructor list to an element of class renamecl yields
an element of the same class�

arities Atom �� renamecl
Lit �� renamecl
list �� �renamecl�renamecl

The intention behind the renaming function is that it takes a value and a re�
naming index returning a value which is equal to the input up to the variable
names� By that each instance of a variable is made unique� As we will see later
the renaming index is increased by the interpreter function after each successfull
uni�cation�

types Rename � nat
consts �rename �� ��a �� renamecl�� Rename�� a �� renamecl �� � ��

For the proofs carried out so far� we only needed the following basic properties
of the functions for substitution� uni�cation and renaming�

rules pname a� �� pname a� �� mgu a� a� � Fail
pname �� a vi� � pname a
pname �� sub a� � pname a

The �rst axiom states that uni�cation fails for two atoms with di�erent pred�
icate symbols� The next two axioms express that renaming and substitution
application do not a�ect the predicate symbol of an atom�

��� Operational Semantics

The semantics of Prolog programs is usually given in terms of the model the�
ory of �rst order logic� Since this approach ignores the behavioral aspects of
Prolog like sequential depth��rst search and the cut control facility� S� Debray
and P� Mishra developed a denotational as well as an equivalent operational
semantics expressing the properties of interest �DM����

Hereafter we will give an operational semantics by the de�nition of an inter�
preter� which is almost identical to the one described in �DM��� with just some



slight modi�cations� In our approach we chose a di�erent renaming function� ac�
cording to the formalization of B�orger and Rosenzweig �BR	��� Furthermore we
considered just one single possible answer substitution �an extension to multiple
answer substitutions is under construction�� Another di�erence consists in the
formalization of the interpreter function� In �DM���� the interpreter is de�ned
by a set of recursive equations� Because computation does not necessarily ter�
minate in Prolog programming� we have to deal with partial functions� Since
in Isabelle�HOL functions are total� we have to model partiality by inductive
relations�

The computation state of the interpreter is described by so called con�gurations�
A con�guration consists of a list of clauses describing the Prolog program� a
computation stack storing di�erent backtrack points� and a renaming index�
Therefore� we de�ne�

types Con�g � Program� CStack� Rename

Each element of the computation stack consists of the substitution computed so
far� the goal still to be executed� and a list of candidate clauses that are yet to
be tried in solving the leftmost literal of the corresponding goal�

To model the e�ect of cuts in Prolog the goal is not presented linearly but
decomposed in a list of �decorated� subgoals� each subgoal has to maintain its
own continuation information� which is just a part of the entire computation
stack� If a cut is encountered while processing a subgoal� the tail of the current
computation stack is replaced by the continuation stack stored along with the
subgoal� This corresponds to the deletion of all those backtrack points set up by
literals on the left of the cut as well as the backtrack point for the parent goal
�i�e� the goal which caused the clause containing the cut to be activated�� which
is the usual Prolog semantics for cut� At the end of this section we will see an
example for this� Now we de�ne the computation stack as�

datatype CStack � Es
j ���� �Subst� �Goal� CStack�list� Clause list� CStack

�in�xr���

Now� we de�ne an interpreter relation for Prolog programs�

consts interp� �� �Con�g� Result�set

syntax �interp� �� Con�g� Result � bool ��
i��� ���� ������

translations con�g
i��� res �� �con�g� res� 	 interp�

The interpreter relation interp� is de�ned as a set of pairs� The syntax section

introduces an in�x operator
i��� for this relation� for which a translation into

the set representation is given� Note that the i� denotes the base interpreter� We
will refer to the interpreter after n re�nement steps as in�

We give an inductive de�nition of the interpreter
i��� by means of inference

rules� where multiple premises are stacked on top of each� Note that the prede�
�ned type of lists comes along with �	 for the empty list and the in�x operator




 for list construction�

If the computation stack is empty� execution terminates returning a fail value�

query failed
�db�Es� vi�

i��� Fail

If the current list of decorated subgoals is empty� execution terminates returning
the current substitution�

query success
�db� �sub� ��� cll���sl� vi�

i��� Ok sub

If we are interested in all possible answer substitutions� execution has to be
continued by processing the tail sl of the stack�

If the �rst element of the current decorated subgoals list is empty� execution
continues by processing the rest of the decorated subgoals list�

goal success
�db� �sub� ds� db���sl� vi�

i��� res

�db� �sub� ���� ctp��ds� cll���sl� vi�
i��� res

If the �rst subgoal of the current decorated subgoals list begins with a cut� the
tail of the computation stack is replaced by the continuation ctp of the current
subgoal�

cut
�db� �sub� �ls� ctp��ds� db���ctp� vi�

i��� res

�db� �sub� �Cut�ls� ctp��ds� cll���sl� vi�
i��� res

All remaining rules hold for con�gurations� where the current decorated subgoals
list is not empty and the �rst subgoal does not start with a cut but with an atom�

If the current choice point contains no more candidate clauses� execution
proceeds by backtracking to the most recent choice point� i�e� popping the current
one from the computation stack�

back
�db� sl� vi�

i��� res

�db� �sub� ��Atm x��ls� ctp��ds� �����sl� vi�
i��� res

If the list of clauses still to be tried contains at least one element� two di�erent
cases have to be considered�

If uni�cation of the leftmost literal in the current subgoal with the head of
the �rst candidate clause fails� the next candidate clause has to be tried�

atm�

mgu�� sub x��� h vi� � Fail

�db� �sub� ��Atm x��ls� ctp��ds� cs���sl� vi�
i��� res

�db� �sub� ��Atm x��ls� ctp��ds� �h� b��cs���sl� vi�
i��� res



If uni�cation succeeds with a substitution sub�� execution proceeds by extend�
ing the computation stack with a new choice point chp and incrementing the
renaming index�

atm�

mgu�� sub x��� h vi� � Ok sub�

�db� chp���sub� ��Atm x��ls� ctp��ds� cs���sl� vi���
i��� res

�db� �sub� ��Atm x��ls� ctp��ds� �h� b��cs���sl� vi�
i��� res

where chp � �sub� � sub� �� b vi� sl���ls� ctp��ds� db�

The new choice point chp contains an updated substitution� a subgoal list where
the uni�ed atom is replaced by a new subgoal containing the body of the selected
clause� and the whole program serving as candidate clauses for the new subgoal�
The decoration of the new subgoal has to be set to the tail of the old computation
stack� In the old choice point� the selected clause has to be removed from the
list of untried clauses�

The formalization of inductive sets is supported in Isabelle�HOL by a special
package� where all generated rules are automatically proved as theorems�

Example � In the following we give a little example� to see how the inter�
preter works on the computation stack� The most interesting point is to see how
the list of decorated subgoals evolves� Therefore we omit in the representation
the substitutions and candidate clauses�
Consider the Prolog program

o � � p� x� q � � s�
p � � q� �� r� q �

p � x �

and query o� Computation starts with an initial computation stack containing
the query decorated with an empty stack�

�h�o�� Esi�

After some execution steps the computation stack looks as follows�

�h�s�� c�i� h��� r�� c�i� h�x�� Esi� h��� Esi�
�h�q� �� r�� c�i� h�x�� Esi� h��� Esi�

�h�p� x�� Esi� h��� Esi�
�h�o�� Esi�

where c� � �h�o�� Esi� and c� �
�h�p� x�� Esi� h��� Esi�

�h�o�� Esi�

Since uni�cation with s fails for all program clauses� the top element of the com�
putation stack is popped� The next clause to be tried for q succeeds immediately�
then we get�

�h��� r�� c�i� h�x�� Esi� h��� Esi�
�h�p� x�� Esi� h��� Esi�

�h�o�� Esi�



Now a cut is encountered in the current subgoal� As described� the tail of the
computation stack is replaced by c�� which yields�

�h�r�� c�i� h�x�� Esi� h��� Esi�
�h�o�� Esi�

Uni�cation with r fails for all program clauses� therefore backtracking has to be
executed� We see now that the remaining clause for p is no more considered�
according to the meaning of the cut�

� Towards the WAM

The �rst Prolog compiler was developed at the University of Edinburgh by
D�H� Warren in �	��� The Warren Abstract Machine �WAM� is a re�nement
of this system� Roughly speaking� the WAM is an abstract machine consisting of
a memory architecture and an instruction set tailored to Prolog� It is based on
the concept of a virtual machine in order to achieve portability to a wide range
of hardware con�gurations �Boi	��� In this paper� we do not describe the details
of the WAM� since we are just doing some re�nement steps towards the WAM�
starting from our operational semantics presented in the previous section� For
more information the reader might refer to �AK	��� which gives a more detailed
introduction to the WAM� rather than the original paper �War����

In �BR	�� B�orger and Rosenzweig developed a methodical derivation of the
WAM starting from an operational semantics for Prolog� They provide a cor�
rectness proof for a whole class of compilers by formulating general compiler
assumptions� The speci�cation of an operational semantics for Prolog is given
in terms of evolving algebras �Gur	
�� Their development of the WAM is parti�
tioned into �
 re�nement steps� each of which introduces a new aspect of the
WAM� For each step� they outline the proofs for correctness and completeness�
However� these proofs are not complete� their description remains semi�formal�

A �rst attempt to check the proofs by machine was made with the theorem
proving system KIV �Sch	
�� This case study revealed that the formal proofs
were signi�cantly more involved than estimated by �BR	��� For example� the
correctness proof of the �rst re�nement step used an invariant property which
covered an entire page� Studying this proof� we got the impression that this
complexity is caused to a large extent by the formalism of evolving algebras�
For instance� the manipulation of inductive data structures seems to be quite
tedious� However� this concept turned out to be central to the formalization of
this case study� On the other hand higher order logic o�ers advanced features for
the treatment of inductive data structures� Therefore� we coded the operational
semantics directly in HOL as presented above and refrained from embedding the
formalism of evolving algebras�

Nevertheless� we could adopt the structure of the re�nement steps developed
by B�orger and Rosenzweig in �BR	�� which turned out to be very suitable for
the realization of the proof task�
We now outline the steps of our development and present the formal de�nition
of the re�ned interpreter after the fourth step�



��� Introduction of pointers

Copying parts of the computation stack into the decorated subgoals list is very
ine�cient� Therefore� the �rst improvement consists of replacing the copies by
pointers to the original stack� called cut points� Hence� we de�ne�

types Index � nat
CArray � �Subst� �Goal� Index�list� Clause list�list

The type CArray replaces CStack in the con�guration� Since the new stack de��
nition no longer contains nested recursion� the de�nition of CArray can be based
on the prede�ned type of lists� We do not need to introduce a new data type� To
allow the deletion of choice points on the stack up to a given index� we provide
a function

consts ntail �� Index � CArray � CArray

which takes an index i and a computation stack� and returns the back end of the
stack of length i�

��� Optimizing the list of candidate clauses

Up to now� the list of candidate clauses for a new subgoal consists of the entire
program� However� it is clear that only some of the clauses are likely to match
the selected atom� Therefore� in a second step we restrict the set of candidate
clauses by a preselection depending on the currently selected atom� This is done
by a function

consts pdef �� Atom� Program� Clause list

which �lters out those clauses from a given program whose heads consist of the
same predicate symbol as the currently selected atom� Additionally� the con�
�guration is extended by a new component which describes a triple of registers
holding the current values for substitution� decorated subgoals list and candidate
clause list� The computation stack is left to maintain the remaining backtracking
points�

��� Reusing choice points

During execution� it is often the case that information is popped from the stack
into the registers� and in a later stage� almost identical information is pushed
back onto the stack� This information transfer can be optimized by leaving the
formerly popped choice point on the stack and just changing part of its contents�
This is related to the well�known peephole optimization in compiler construction�

��� Deleting useless choice points

The next optimization step consists of deleting trivial choice points� This means
a choice points including an empty candidate clause list is no longer pushed onto
the stack� whenever execution returned to this point� it would be immediately
popped by backtracking�



��� The optimized interpreter model

After these four re�nement steps� the formalization of the interpreter has under�
gone the following changes�

The con�guration of our interpreter has been extended by two components�
The �rst one describes di�erent modes of the computation� We distinguish four
modes� In call mode execution proceeds until an atom is encountered in the
current subgoal or computation terminates� In try mode a choice point is pushed
onto the computation stack� In enter mode uni�cation is attempted� and in retry
mode reuse of choice points is done� The second extension is an index to the
computation stack� which stores the value of the current cut point� This cut
point register will be needed for the further development� We therefore de�ne�

datatype Mode � Call j Try j Enter j Retry
types Regs � �Subst� �Goal� Index�list� Clause list�

Con�g � Program� CArray � Regs� Rename�Mode� Index

The inductive de�nition of the interpreter
i��� is as follows�

If the decorated goals register is empty� the query was successful� returning the
content of the substitution register as result�

query success
�db� arr� �sreg� ��� creg�� vi�Call� ct�

i��� Ok sreg

If the �rst subgoal in the decorated subgoals register is empty� execution proceeds
the rest of the decorated goals list�

goal succes
�db� arr� �sreg� ds� creg�� vi�Call� ct�

i��� res

�db� arr� �sreg� ���� ctp��ds� creg�� vi�Call� ct�
i��� res

If a cut is encountered� the backtracking stack is shortened upto the cut point
of the current subgoal�

cut
�db� ntail ctp arr� �sreg� �ls� ctp��ds� creg�� vi�Call� ct�

i��� res

�db� arr� �sreg� �Cut�ls� ctp��ds� creg�� vi�Call� ct�
i��� res

The following two rules hold for con�gurations� where the current subgoal begins
with an atom� but the predicate of the current atom is not de�ned� This is the
case� if the current atom does not occur in any head of a program clause�

If the backtracking stack is empty� computation fails�

call�
pdef x db � ��

�db� ��� �sreg� ��Atm x��ls� ctp��ds� creg�� vi�Call� ct�
i��� Fail

If the backtracking stack is not empty� execution is processed in Retry mode�

call�

pdef x db � ��

�db� x�xs� �sreg� ��Atm x��ls� ctp��ds� creg�� vi�Retry� ct�
i��� res

�db� x�xs� �sreg� ��Atm x��ls� ctp��ds� creg�� vi�Call� ct�
i��� res



If the de�nition of the current atom contains at least one clause� computation
continues with mode set to Try and the candidate clauses and cut point registers
updated�

call�

pdef x db � c�cs

�db� arr� �sreg� ��Atm x��ls� ctp��ds� c�cs�� vi�Try� length arr�
i��� res

�db� arr� �sreg� ��Atm x��ls� ctp��ds� creg�� vi�Call� ct�
i��� res

If computation is in Try mode� two di�erent cases have to be distinguished�
In the �rst case� the candidate clauses register contains at least two clauses�

one to be tried immediately and at least one to be pushed onto the stack� Then
execution proceeds in Enter mode with a new choice point pushed onto the stack�

try�
�db� �sreg� dreg� c��cs��arr� �sreg� dreg� c��c��cs�� vi�Enter� ct�

i��� res

�db� arr� �sreg� dreg� c��c��cs�� vi�Try� ct�
i��� res

If there is only one candidate clause to be tried� no additional choice point has
to be stored on the stack�

try�
�db� arr� �sreg� dreg� �c��� vi�Enter� ct�

i��� res

�db� arr� �sreg� dreg� �c��� vi�Try� ct�
i��� res

If uni�cation fails in Enter mode� the result of the computation depends on the
contents of the backtracking stack�

If there are no more backtracking points� computation terminates returning
a fail value�

enter�
mgu�� sreg x��� h vi� � Fail

�db� ��� �sreg� ��Atm x��ls� ctp��ds� �h� b��cs�� vi�Enter� ct�
i��� Fail

If the backtracking contains at least one element� computation is continued in
Retry mode �

enter�

mgu�� sreg x��� h vi� � Fail

�db� x�xs� �sreg� ��Atm x��ls� ctp��ds� �h� b��cs�� vi�Retry� ct�
i��� res

�db� x�xs� �sreg� ��Atm x��ls� ctp��ds� �h� b��cs�� vi�Enter� ct�
i��� res

If uni�cation succeeds� execution proceeds in Call mode after updating the reg�
isters�

enter�

mgu�� sreg x��� h vi� � Ok sub�

�db� arr� regs� vi���Call� ct�
i��� res

�db� arr� �sreg� ��Atm x��ls� ctp��ds� �h� b��cs�� vi�Enter� ct�
i��� res

where regs � �sub� � sreg� �� b vi� sl���ls� ctp��ds� �h� b��cs�

In Retry mode� the information of the top level backtracking point is reused�
where two di�erent cases have to be considered�



In the �rst case� the top level element contains more than one candidate
clauses� Then the backtrack information is loaded into the registers while the
candidate clauses list is updated in the top level stack element�

retry�
�db� �sub� dcl� c��cs��xs� �sub� dcl� c�c��cs�� vi�Enter� length xs�

i��� res

�db� �sub� dcl� c�c��cs��xs� �sreg� dreg� creg�� vi�Retry� ct�
i��� res

If the backtracking point contains just one single clause still to be tried� the
backtrack information is loaded into the registers and the current top level stack
element is deleted�

retry�
�db� xs� �sub� dcl� �c��� vi�Enter� length xs�

i��� res

�db� �sub� dcl� �c���xs� �sreg� dreg� creg�� vi�Retry� ct�
i��� res

Example � Now we will see how computation has changed in our example�
In addition to the computation stack there is now a register containing the
current decorated subgoal list� In the initial state� the query is stored in the
register and the stack is empty� After some execution steps these components
look as follows�

�h�s�� �i� h��� r�� �i� h�x�� �i� h��� �i�
�h�q� �� r�� �i� h�x�� �i� h��� �i�

�h�p� x�� �i� h��� �i�

You may notice that the bottom stack element of the example in ��
 does no
longer occur in this computation� This results of the fact that there exists just
one single program clause for o� After having tried it� it would be useless to
return to this point since the list of candidate clauses would be empty�

Since there is no program clause for s the information of the top level back�
tracking point is reused� There is just one clause still to be tried� therefore the
backtracking point is popped from the stack into the register�

�h��� r�� �i� h�x�� �i� h��� �i� �h�p� x�� �i� h��� �i�

Now a cut is encountered in the current subgoal which causes the backtracking
stack to be set to the empty stack�

�h�r�� �i� h�x�� �i� h��� �i�

Since there is no program clause for r� computation terminates returning Fail�

� Proof principles

In a re�nement step� a more concrete interpreter model is developed from an
abstract model� To establish a relationship between two di�erent levels� we have
to de�ne an abstraction function F� translating con�gurations of the concrete
interpreter to con�gurations of the abstract one�



We call an interpreter
i��� a correct re�nement of the interpreter

i���� if every

computation of
i��� starting with an initial con�guration terminates returning a

result res provided the computation of
i��� returns res starting with an equivalent

initial con�guration� The notion of initial con�guration is explained below�

A con�guration of
i��� is a triple consisting of the Prolog program� a compu�

tation stack� and a renaming index� In an initial con�guration� the computation
stack contains exactly one choicepoint� consisting of a substitution which is typ�
ically set to the identity map� a decorated subgoals list containing the goal to
be solved decorated by the empty stack� and a list of candidate clauses which is

typically set to the whole program� The initial con�guration for
i��� just di�ers

in the decoration of the goal� where now a pointer to the empty stack is held�

Application of the abstraction function F to the initial con�guration of
i��� re�

turns the equivalent initial con�guration of
i���� The correctness theorem is then

formalized as follows�

correctness
��db� ��subst� ��goal� ���� cll��� ��

i���res�

�F�db� ��subst� ��goal� ���� cll��� ��
i���res�

Since this assertion cannot be proved directly� we have to show the validity
of a more general theorem� holding for any given con�guration� The following
theorem can be proved by rule induction�

i� implies i�

con�g ok con�g

con�g
i���res

�F con�g�
i���res

Here� we had to introduce an additional assumption� The predicate con�g ok
restricts con�g to admissible con�gurations� One of the central proof tasks is
to �nd the right restrictions� For each re�nement step� several attempts were
necessary to �nd the �nal solution�

Proving correctness is not su�cient to assure a really useful implementation�

We could implement
i��� by a never�halting function ful�lling the correctness

property� Therefore� we have to verify the completeness of the development step

as well� which assures that every solution computed by
i��� can be found by

i����

completeness
�F�db� ��subst� ��goal� ���� cll��� ��

i���res�

��db� ��subst� ��goal� ���� cll��� ��
i���res�

Here again� a generalization of the theorem has to be proved�

i� implies i�

con�g ok con�g�

Fcon�g�
i���res

con�g�
i���res

This technique of de�ning an abstraction function F and inductively proving
correctness and completeness by �nding suitable restrictions was common to all
re�nement steps considered so far�



� Results and Future Work

The formalization and implementation of the proofs for four development steps
took seven months in total� The formalization in Isabelle comprises about 	��
lines� the proofs for correctness and completeness consist of approximately �
��
user interactions� Although Isabelle o�ers a certain degree of automation� sig�
ni�cant parts of the proofs have to be guided by user interaction� Better proof
support by the system would facilitate the realization of complex case studies like
the present one� This concerns in particular an improvement of error messages
returned by the system�

As described� we decided to refrain from embedding the formalism of evolv�
ing algebras and coded the di�erent re�nement steps of an Prolog interpreter
directly in higher order logic� Because of this� we were able to make intensive
use of Isabelle�s features concerning the treatment of inductive data structures
and recursive concepts� The type class mechanism was pro�tably used for over�
loading� It is our opinion that the adaption of the formalization to higher order
logic simpli�ed the complexity of the proof invariants to a large extent� Due to
that� we were able to conduct a large�scale case study like the present one� as far
as we know this is one of the biggest mechanized proofs concerning operational
semantics� In general this cannot be realized without careful decomposition of
the proof task� Here the adaption of the re�nement steps developed by B�orger
and Rosenzweig was essential to reduce the complexity of each step to a man�
ageable size�

Our next steps consist in extending our formalization to the computation of
multiple answer substitutions� which corresponds closer to a real Prolog inter�
preter� However� we do not think that proofs will become more complicated by
that�

Furthermore� the development steps towards the WAM not yet considered
remain to be done� The next re�nement step introduces parts of the WAM
instruction set� the list of clauses de�ning a predicate is now translated by an
abstract compiler into a sequence of instructions that achieves the indexing of
the clauses together with its backtracking management �Boi	��� The proofs for
this step are presumed to be even more complex than the presented ones due to
the formalization of suitable compiler assumptions�

Acknowledgements I wish to thank Tobias Nipkow and Franz Regensburger
for helpful discussions and constructive criticism�

References

�AK��� Hassan A��t�Kaci	 Warren�s Abstract Machine� A Tutorial Reconstruction	
MIT Press� Cambridge� Massachusetts� ����	

�Apt��� Krzysztof R	 Apt	 Logic programming	 In J	 van Leeuwen� editor� Handbook
of Theoretical Computer Science� chapter ��� pages �����
�	 Elsevier Science
Publishers B	V	� ����	



�Boi��� Patrice Boizumault	 The Implementation of Prolog	 Princeton Series in Com�
puter Science	 Princeton University Press� Princeton� New Jersey� ����	

�BR��� E	 B�orger and D	 Rosenzweig	 The WAM � De�nition and Compiler Cor�
rectness	 In C	 Beierle and L	 Pl�umer� editors� Logic Programming� Formal

Methods and Practical Applications	 Elsevier� ����	
�DM��� Saumya K	 Debray and Prateek Mishra	 Denotational and Operational Se�

mantics for Prolog	 J� Logic Programming� 
��������� ����	
�Gur��� Yuri Gurevich	 Evolving Algebras ����� Lipari Guide	 In E	 B�orger� editor�

Speci�cation and Validation Methods� pages ����	 Oxford University Press�
����	

�Llo�
� J	 W	 Lloyd	 Foundations of Logic Programming	 Springer� ���
	
�Pau��� L	C	 Paulson	 Isabelle� A Generic Theorem Prover� volume ��� of LNCS	

Springer� ����	
�Rus��� David M	 Russino�	 A Veri�ed Prolog Compiler for the Warren Abstract

Machine	 J� Logic Programming� 
������
����� ����	
�Sch��� G	 Schellhorn	 Von PROLOG zur WAM � Compilerveri�kation mit KIV	 Talk

at the annual meeting of the GI section �Logic in Computer Science�� Karl�
sruhe� Juni ����	

�War��� D	 H	 Warren	 An Abstract Prolog Instruction Set	 Technical Report ����
SRI International� ����	

This article was processed using the LATEX macro package with LLNCS style


