Well-formedness
Formalization of all context conditions (*static semantics*)
“Type system++”

When do we have enough?

If nothing bad can happen during the execution of well-formed programs

How is “nothing bad can happen” formalized?
Execution does not get stuck (*type safety*, later)
Overview

- Definite assignment
- Method overriding
- Well-formedness
Definite assignment
Variables must be assigned to before use

Fields are automatically initialized with their default value upon object creation
In theory

Thm It is in general undecidable if a variable/field has been initialized before use.

Proof \(\text{if } (b) \ V := \text{Val } v \ \text{else } \text{unit}; \ \text{Var } V \)

1. \(V \) is initialized before use iff \(b \) does not evaluate to false.

2. Therefore a program analyzer would need to decide whether \(b \) can evaluate to false.

3. This is undecidable for arbitrary \(b \). Take “Turing machine \(k \) with input \(k \) terminates with output 0” (realized in Jinja as a search procedure). There is no program that can decide this for every \(k \).
In practice: variables

Fact It is easy to check if a variable has been initialized before use: if in doubt, be conservative.

Examples:

- \(\text{if } (b) \ V := \text{Val } v; \ 	ext{Var } V \)
 - is rejected because \(b \) could be false.
 - What if \(b \) is never false? Then \(\text{if} \) is pointless!

- \(\text{if } (b_1) \ V := \text{Val } v_1; \text{if } (b_2) \ V := \text{Val } v_2; \ 	ext{Var } V \)
 - is rejected because \(b_1 \) and \(b_2 \) could be false.

Rejection is not a problem:

Insert dummy initialization \(V := \text{Val } v \)
right after declaration of \(V \).
Fact It is hard to check if a field of an object has been initialized before use.

Example: Let p be a formal parameter of class type. Inside the method body

- variable p is initialized,
- but is field F of p initialized??

Therefore Java and Jinja initialize all fields of an object with their default value.
Function \mathcal{A} (1)

$\mathcal{A} :: expr \Rightarrow vname\ set$

$\mathcal{A} e =$ the set of all (global) variables that are necessarily assigned to if e terminates normally

$\mathcal{A} (new\ C) = \{\}$
$\mathcal{A} (Cast\ C\ e) = \mathcal{A} e$
$\mathcal{A} (Val\ v) = \{\}$
$\mathcal{A} (e_1 \ « bop »\ e_2) = \mathcal{A} e_1 \cup \mathcal{A} e_2$
$\mathcal{A} (Var\ V) = \{\}$
$\mathcal{A} (V := e) = \{V\} \cup \mathcal{A} e$
$\mathcal{A} (e.F\{D\}) = \mathcal{A} e$
$\mathcal{A} (e_1.F\{D\} := e_2) = \mathcal{A} e_1 \cup \mathcal{A} e_2$
$\mathcal{A} (e.M(\text{es})) = \mathcal{A} e \cup (\bigcup_{e \in \text{set}\ \text{es}} \mathcal{A} e)$
Function $\mathcal{A} \ (2)$

$$
\begin{align*}
\mathcal{A} \{ V : T ; e \} &= \mathcal{A} \ e - \{ V \} \\
\mathcal{A} \ (e_1 ; e_2) &= \mathcal{A} \ e_1 \cup \mathcal{A} \ e_2 \\
\mathcal{A} \ (if \ (e) \ e_1 \ else \ e_2) &= \mathcal{A} \ e \cup (\mathcal{A} \ e_1 \cap \mathcal{A} \ e_2) \\
\mathcal{A} \ (while \ (b) \ e) &= \mathcal{A} \ b \\
\mathcal{A} \ (throw \ e) &= \{ V \ | \ True \} \\
\mathcal{A} \ (try \ e_1 \ catch(C \ V) \ e_2) &= \mathcal{A} \ e_1 \cap (\mathcal{A} \ e_2 - \{ V \})
\end{align*}
$$

Motivation for throw:

$$
\mathcal{A} \ (if \ (e) \ V := Val \ v \ else \ throw \ e_2) = \{ V \}
$$
Function \mathcal{D} (1)

$\mathcal{D} :: \text{expr} \Rightarrow \text{vname set} \Rightarrow \text{bool}$

$\mathcal{D} \ e \ A =$
if initially all variables in A are initialized
then execution of e does not access an uninitialized variable

$\mathcal{D} \ (\text{new } C) \ A = \text{True}$
$\mathcal{D} \ (\text{Cast } C \ e) \ A = \mathcal{D} \ e \ A$
$\mathcal{D} \ (\text{Val } v) \ A = \text{True}$
$\mathcal{D} \ (e_1 \ « \text{bop} » \ e_2) \ A = (\mathcal{D} \ e_1 \ A \land \mathcal{D} \ e_2 \ (A \cup A \ e_1))$
$\mathcal{D} \ (\text{Var } V) \ A = (V \in A)$
$\mathcal{D} \ (V ::= e) \ A = \mathcal{D} \ e \ A$
$\mathcal{D} \ (e \cdot F\{D\}) \ A = \mathcal{D} \ e \ A$
$\mathcal{D} \ (e_1 \cdot F\{D\}:={e_2}) \ A = (\mathcal{D} \ e_1 \ A \land \mathcal{D} \ e_2 \ (A \cup A \ e_1))$
Function \mathcal{D} (2)

\[\mathcal{D} \{ V: T; e \} A = \mathcal{D} e (A \setminus \{ V \})\]

\[\mathcal{D} \langle e_1; e_2 \rangle A = (\mathcal{D} e_1 A \land \mathcal{D} e_2 (A \cup A e_1))\]

\[\mathcal{D} \langle \text{if} \langle e \rangle e_1 \text{ else } e_2 \rangle A =\]

\[\quad (\mathcal{D} e A \land \mathcal{D} e_1 (A \cup A e) \land \mathcal{D} e_2 (A \cup A e))\]

\[\mathcal{D} \langle \text{while} \langle b \rangle e \rangle A = (\mathcal{D} b A \land \mathcal{D} e (A \cup A b))\]

\[\mathcal{D} \langle \text{throw} \ e \rangle A = \mathcal{D} e A\]

\[\mathcal{D} \langle \text{try} \ e_1 \text{ catch} \langle C V \rangle e_2 \rangle A = (\mathcal{D} e_1 A \land \mathcal{D} e_2 (A \cup \{ V \}))\]
Each method body \((Vs,e)\) must fulfill the condition

\[\mathcal{D}e (\{\text{this}\} \cup \text{set Vs})\]
Correctness

Thm If $P \vdash \langle e, (h, l) \rangle \Rightarrow \langle e', (h', l') \rangle$ then $\mathcal{A} e \subseteq \text{dom } l'$

Proof by rule induction over \Rightarrow

Correctness of \mathcal{D}: part of type safety proof (later)
A small imprecision

Let \(e = \text{if (Var } B) \{V:T; \text{throw } _\} \text{ else } V := \text{true} \)

\[A \{ V:T; \text{throw } _\} = A (\text{throw } _) - \{ V \} \]

\[A e = A(\text{Var } B) \cup (A \{ V:T; \text{throw } _\} \cap A(V := \text{true})) \]

\[= \{ \} \]

\[D(e; V := \text{Var } V) \{ B \} = \]

\[(D e \{ B \} \land D(V := \text{Var } V) (\{ B \} \cup \{ \})) = \]

\[(D e \{ B \} \land D(\text{Var } V) \{ B \}) = \]

\[(D e \{ B \} \land V \in \{ B \}) = \text{False} \]

\[A e = \{ \} \text{ is too pessimistic but not incorrect} \]
The problem

\[A \{ V : T ; \text{throw } __ \} \]
should be \{ V \mid True\} and not \{ V \mid True\} – \{ V \}.

Possible solutions:

- Redefine \(A \) and \(D \). Complicated. See Jinja paper.
- Do not allow nested declaration of the same \(V \). Java!
 Then it does not matter if \(V \in A \{ V : T ; __ \} \) or not.

For this course: we leave things as they are and put up with the small imprecision.
Method overriding
class C extends B
{...
 method M(p:T):R = ...
 ...
}

class D extends C
{...
 method M(p:T'):R' = ...
 ...
}

M in D \textit{overrides} (overwrites, redefines) M in C
The question

How should T and T' be related?
How should R and R' be related?

Guiding principle: Type Safety

If e is statically (at compile time) of class C
then the evaluation of e should yield a subclass of C

Then $e.M(\ldots)$ can never fail at runtime as in SmallTalk:

Method not understood
Covariance in the result type

\[R' \leq R \]

New result type must be subtype of old result type

Otherwise:

```java
class R' { }
class R extends R' { method M2() = ... }

{V:C; V := new D; V.M(...).M2()}
```

is type correct but semantics gets stuck.
Contravariance in the argument type

\[T \leq T' \]

New argument type must be *supertype* of old argument type

Why?

1. Assume \(e \cdot M (e') \) is statically well-typed.
2. Assume \(e \) has static type \(C \).
3. Then the static type of \(e' \) is \(\leq T \).
4. Now assume the dynamic type of \(e \) is \(D \).
5. Thus the dynamic type of \(e' \) must be \(\leq T' \).
6. But we can only guarantee \(e' \) has type \(T \).
7. \(\implies T \leq T' \)
Example

class C extends B
{ method M(p:T):R = ... }

class D extends C
{ method M(p:T'):R = p.M2() }

class T { }

class T' extends T { method M2():R = ... }

Problem?

{V:C; V := new D; V.M(new T)}

is type correct but semantics gets stuck.
The set theoretic perspective

For total functions:

\[
\begin{align*}
T & \subseteq T' & R' & \subseteq R \\
T' & \rightarrow R' & \subseteq T & \rightarrow R
\end{align*}
\]
Terminology

\[_ \rightarrow _ \text{ is } \textit{contravariant} \text{ in the first argument} \]

\[_ \rightarrow _ \text{ is } \textit{covariant} \text{ in the second argument} \]

Alternatively: \textit{antimonotone}, \textit{monotone}
Method overriding in Jinja, Java and Eiffel

Jinja Contravariant in parameters, covariant in result

Java Invariant:

\[
T = T' \quad \text{then} \quad R = R'
\]

else overloading, not overriding.

Overloading: multiple methods with the same name but different parameter types are visible at the same time. Use static type of actual parameters in method selection (tricky).

Eiffel Covariant in parameters and result (not type safe)
class Point
{field x: Integer
 method eq(p:Point):Boolean = (this.x = p.x)
}

class ColPoint extends Point
{field col: Integer
 method eq(cp:ColPoint):Boolean =
 (if (this.x = cp.x) (this.col = cp.col)
 else false)
}
Java versus Eiffel

```
{p1:ColPoint; p1 := new ColPoint;
 p1.x := 5; p1.col := 0;
 {p2:Point; p2 := new ColPoint;
  p2.x := 5; p2.col := 1;
  p1.eq(p2) }}
```
evaluates to

- in Java: `true`
- in Eiffel: `false`
- in Jinja: `eq in ColPoint not wellformed!`

How can we program `ColPoint` in Jinja?
ColPoint in Jinja

class ColPoint extends Point
{
 field col: Integer
 method eqCP(cp: ColPoint): Boolean =
 (if (this.x = cp.x) (this.col = cp.col)
 else false)
}

Similar to Java: make argument type part of method name. In Java this happens implicitly via overloading.
Well-formedness
Well-formed program P

$\text{wf-J-prog } P$

- The system classes are declared:
 $$\{ \text{Object, } \text{NullPointer, ClassCast, OutOfMemory} \} \subseteq \text{set}(\text{map fst } P)$$

- No class is declared twice:
 $$\text{distinct } (\text{map fst } P)$$

- Every class declaration $$(C, D, fs, ms) \in \text{set } P$$ is well-formed.
Well-formed class declaration \((C, D, fs, ms)\)

- All field declarations in \(fs\) are well-formed
- No field in \(fs\) is declared twice
- All method declarations in \(ms\) are well-formed
- No method in \(ms\) is declared twice
- If \(C \neq Object\) then
 - \(D\) is a class in \(P\)
 - \(D\) is not a subclass of \(C\): \(\neg P \vdash D \not\subseteq^* C\)
 - **Overriding:** if \((M, Ts, T, mb) \in set ms\) and \(P \vdash D\) sees \(M\): \(Ts' \rightarrow T' = mb'\) in \(D'\)
 then \(P \vdash T \leq T'\) and \(P \vdash Ts' [\leq] Ts\)
 Method overriding is **covariant** in the result type and **contravariant** in the argument types
Well-formed method declaration \((M, Ts, T, Vs, e)\)

- All parameter types are valid: \(\forall T \in \text{set Ts. is-type } P T\)
- The result type is valid: \(\text{is-type } P T\)
- There are as many parameter types as names: \(|Ts| = |Vs|\)
- All parameter names are distinct: \(\text{distinct } Vs\)
- \textit{this} is not a parameter name: \(\text{this} \notin \text{set } Vs\)
- The method body is well-typed:
 \[
 \exists T'. P, [\textit{this} \mapsto \text{Class } C, Vs \mapsto Ts] \vdash e :: T' \land P \vdash T' \leq T
 \]
- All local variables are assigned to before use:
 \(\mathcal{D} e (\{\textit{this}\} \cup \text{set } Vs)\)
Well-formed field declaration \((F, T)\)

The type is valid: \(\text{is-type } P\ T\)