Type Safety
What is type safety?

The type system guarantees safety of the execution. means
Execution of well-typed terms does not get stuck. means
If \(e \) is well-typed and not final then \(e \) can be reduced.

Well-typed expressions do not go wrong. (Robin Milner, A Theory of Type Polymorphism in Programming, 1978)
Big step versus small step semantics

When is $\langle e,s \rangle$ stuck?

- Small step semantics: $\exists e' s'. P \vdash \langle e,s \rangle \rightarrow \langle e',s' \rangle$
- Big step semantics: $\exists e' s'. P \vdash \langle e,s \rangle \Rightarrow \langle e',s' \rangle$ No!

Big step semantics cannot distinguish between being stuck and nontermination!

Example:
- $\langle \text{while (true) unit},s \rangle$ does not terminate
- $\langle V := \text{Var V}, \langle h,\text{empty} \rangle \rangle$ is stuck
The advantages of type safety

• For the programmer:
 No uncontrollable runtime errors as in C.

• For the language implementor:
 Many explicit runtime checks unnecessary.

Example: Well-typedness of \(\langle addr\ a.F\{D\};(h,l)\rangle \) will guarantee \(a \in dom\ h \).
Decomposing type safety

We want to show:

If e is well-typed, its reduction can *never* get stuck.

Is it sufficient to prove

If e is well-typed and not final then e can be reduced (via \rightarrow) to some e'.

No! What if e' is not well-typed any more?

Type safety = Progress \land Subject Reduction

Progress: Well-typed non-final expressions can be reduced.

Subject reduction: Reduction preserves well-typedness.

If e has type T and reduces to e' then e' has type T' where $T' \leq T$.
Progress
First attempt:

If $P, E \vdash e :: T$ and $\neg \text{final } e$ then $\exists e', s'. P \vdash \langle e, s \rangle \rightarrow \langle e', s' \rangle$

Not true for arbitrary s:

- Reduction of $\langle \text{Var } V, (h, l) \rangle$ needs $V \in \text{dom } l$
 In general: $\mathcal{D} e (\text{dom } l)$

- Reduction of $\langle \text{addr } a. F\{D\}, (h, l) \rangle$ needs $h a = \llbracket (C, fs) \rrbracket$ then $(F, D) \in \text{dom } fs$
 In general: each object on the heap must have all the fields required by its class.
Heap conformance

Def Heap h conforms to program P iff each object in h conforms to P and all system exceptions are preallocated.

Def Object (C, fs) conforms to program P iff for every field $F:T$ declared in D that C has, there is a value v such that $fs(F, D) = [v]$ and the type of v is a subtype of T.
Heap conformance (formally)

\[P \vdash h \sqrt{\equiv} \]
\[(\forall a \text{ obj. } h\ a = \lfloor \text{obj} \rfloor \rightarrow P, h \vdash \text{obj \ } \sqrt{\}) \land \text{preallocated } h \]

\text{preallocated } h \equiv
\[\forall C \in \text{sys-xcpts. } \exists \text{fs. } h (\text{addr-of-sys-xcpt } C) = \lfloor (C, \text{fs}) \rfloor \]
Object conformance (formally)

\[P, h \vdash \text{obj} \quad \checkmark \equiv \]

\[\text{let } (C, v_m) = \text{obj} \]

\[\text{in } \exists \text{FDTs}. \]

\[P \vdash C \text{ has-fields FDTs} \land P, h \vdash v_m \quad (\leq) \quad \text{map-of FDTs} \]

\[P, h \vdash v_m \quad (\leq) \quad T_m \equiv \]

\[\forall \text{FD} T. \]

\[T_m \text{ FD} = \lfloor T \rfloor \quad \longrightarrow \quad (\exists v. v_m \text{ FD} = \lfloor v \rfloor \land P, h \vdash v \leq T) \]

\[P, h \vdash v \leq T \equiv \exists T'. \text{typeof}_h v = \lfloor T' \rfloor \land P \vdash T' \leq T \]
If $P, E \vdash e :: T$ and $P \vdash h \checkmark$ and $D e (\text{dom } l)$ and $\neg \text{final } e$
then $\exists e' s'. P \vdash \langle e, s \rangle \rightarrow \langle e', s' \rangle$.

Problem: e' need not be well-typed anymore. Why?

- e' may contain *Addresses*.
- The type of a subexpression of e' may have decreased.

Example: $P \vdash \langle \text{Cast } C e, s \rangle \rightarrow \langle \text{Cast } C e', s' \rangle$

- $P, E \vdash e :: \text{Class } D$, $P \vdash C \preceq^* D$ (down cast)
- $P, E \vdash e' :: \text{Class } D'$, C and D' are *incomparable*.

Solution: modified (more liberal) type system $P, E, h \vdash e : T$
Two kinds of expressions

Input expressions:
- do not contain addresses
- must satisfy various pragmatic type conditions (eg only up or down casts)
- are checked statically by $P,E \vdash e :: T$

Runtime expressions: any expression reached via reduction (\rightarrow^*) from an input expression

Aim: show that runtime expressions satisfy an invariant expressed as a weaker type system $P,E,h \vdash e : T$

There is no runtime type checking in Jinja!
Just a technical device for the proof of type safety.
Requirements for $P, E, h \vdash e : T$

- Weaker than input type system:
 \[P, E \vdash e :: T \implies P, E, h \vdash e : T \]
- Must ensure progress
- Must ensure subject reduction property
The rules for $P,E,h \vdash e : T$

Many rules are similar to their $P,E \vdash e :: T$ counterpart, but with h added.

Examples

\[
\text{typeof}_h v = [T] \implies P,E,h \vdash \text{Val} \; v : T
\]

\[
[P,E,h \vdash e_1 : T_1; P,E,h \vdash e_2 : T_2] \
\implies P,E,h \vdash e_1 ; e_2 : T_2
\]

We concentrate on the rules that have really changed.
Reasons for change

Reduction of subterm reduces its type.

Extreme case: subterm becomes null.
Binary operations

\[
\begin{align*}
P, E, h \vdash e_1 : T_1; & \quad P, E, h \vdash e_2 : T_2; \\
\text{case bop of } = & \Rightarrow T = \text{Boolean} \\
& | + \Rightarrow T_1 = \text{Integer} \land T_2 = \text{Integer} \land T = \text{Integer} \\
\Rightarrow & \quad P, E, h \vdash e_1 \triangleleft e_2 : T
\end{align*}
\]
Cast

\[
\begin{align*}
\left[P, E, h \vdash e : T; \text{is-ref} T \right] & \Rightarrow \\
P, E, h \vdash \text{Cast } C e : \text{Class } C
\end{align*}
\]
Variable assignment

$$\left[E \ V = \ T; \ P,E,h \vdash e : T'; \ P \vdash T' \leq T \right] \implies$$

$$P,E,h \vdash V := e : Void$$

Just to show that \(V \neq \text{this}\) is not necessary for type safety.
Field access

\[
\begin{array}{l}
\lbrack P, E, h \vdash e : \text{Class } C; \ P \vdash C \text{ has } F : T \text{ in } D \rbrack \implies \\
\ P, E, h \vdash e. F\{D\} : T \\
\end{array}
\]

- Statically: sees
- Dynamically: has

Is that all?

\[
\begin{array}{l}
P, E, h \vdash e : NT \implies P, E, h \vdash e. F\{D\} : T
\end{array}
\]
Field assignment

\[
\begin{align*}
\llbracket P, E, h &\vdash e_1 : \text{Class C}; \ P \vdash C \text{ has } F : T \text{ in } D; \\
&\quad P, E, h \vdash e_2 : T_2; \ P \vdash T_2 \leq T \rrbracket \\
\implies &\quad P, E, h \vdash e_1.F\{D\} := e_2 : \text{Void} \\
\llbracket P, E, h &\vdash e_1 : NT; \ P, E, h \vdash e_2 : T_2 \rrbracket \\
\implies &\quad P, E, h \vdash e_1.F\{D\} := e_2 : \text{Void}
\end{align*}
\]
As before:

\[P, E, h \vdash e : \text{Class } C; \]
\[P \vdash C \text{ sees } M: \operatorname{T}s \rightarrow T = (\operatorname{pns}, \operatorname{body}) \text{ in } D; \]
\[P, E, h \vdash \operatorname{es}[:] \operatorname{T}s'; P \vdash \operatorname{T}s' \preceq \operatorname{T}s \]
\[\implies P, E, h \vdash e.\operatorname{M}(\operatorname{es}) : T \]

In addition:

\[[P, E, h \vdash e : NT; P, E, h \vdash \operatorname{es}[:] \operatorname{T}s] \]
\[\implies P, E, h \vdash e.\operatorname{M}(\operatorname{es}) : T \]
Local variable

\[P, E(V \mapsto T), h \vdash e : T' \implies P, E, h \vdash \{ V : T; \ e \} : T' \]

Just to show that *is-type* \(P \ T \) is not necessary for type safety.
throw

\[
\left[P, E, h \vdash e : T_r ; \text{is-refT } T_r \right]
\implies P, E, h \vdash \text{throw } e : T
\]
try-catch

\[
\left[P, E, h \vdash e_1 : T_1 ; P, E(V \mapsto \text{Class } C), h \vdash e_2 : T_2 ; P \vdash T_1 \leq T_2 \right]
\]

\[\implies P, E, h \vdash \text{try } e_1 \text{ catch (C V) } e_2 : T_2\]
Uniqueness of types

Expressions do not have unique types w.r.t. $P,E,h \vdash e : T$

So what?

$P,E,h \vdash e : T$ is not used to compute T but to show that e has a type.
Lemma If $P, E \vdash e :: T$ then $P, E, h \vdash e : T$.

Proof Easy rule induction.
If everything is ok and e is not final then e reduces:

Thm (Progress) If $\text{wf-J-prog } P$ and $P, E, h \vdash e : T$ and $P \vdash h \triangleright$ and $D e (\text{dom } l)$ and $\neg \text{ final } e$ then
$\exists e' s'. P \vdash \langle e, (h, l) \rangle \rightarrow \langle e', s' \rangle$.

Why

$\text{wf-J-prog } P$: method call

$P \vdash h \triangleright$: field access

$D e (\text{dom } l)$: variable access
Subject reduction
Formalization of subject reduction

First attempt:

If \(P, E, h \vdash e : T \) and \(P \vdash \langle e, (h, l) \rangle \rightarrow \langle e', (h', l') \rangle \) then
\[\exists T'. P, E, h' \vdash e' : T' \wedge P \vdash T' \leq T \]

No true for arbitrary \((h,l)\):

- Reduction of field access needs: field must have value of the right type, i.e. \(P \vdash h \checkmark \)
- Reduction of variable access needs: variable must have value of the right type, i.e. \(l\) (values) must conform to \(E\) (types).
Local variable and state conformance

Def Local variables \(I \) conform to environment \(E \) iff each variable \(V \in \text{dom} \ l \) has a value conforming to type \(E \ V \).

\[
P, h \vdash I (: \leq)_{w} E \equiv \\
\forall V \ v. \ I \ V = \lfloor v \rfloor \rightarrow (\exists T. \ E \ V = \lfloor T \rfloor \land P, h \vdash v : \leq T)
\]

State conformance:

\[
P, E \vdash (h, I) \sqrt{\equiv} P \vdash h \sqrt{\land} P, h \vdash I (: \leq)_{w} E
\]
If everything is ok, reduction preserves well-typedness and may reduce type:

Thm If $\text{wf-J-prog } P$ and $P \vdash \langle e, (h, l) \rangle \rightarrow \langle e', (h', l') \rangle$ and $P, E \vdash (h, l) \checkmark$ and $P, E, h \vdash e : T$ then

$\exists T'. P, E, h' \vdash e' : T' \land P \vdash T' \leq T$.

Proof by rule induction on \rightarrow.
A complication

Example case:

\[P \vdash \langle e, (h, l) \rangle \rightarrow \langle e', (h', l') \rangle \rightarrow \]

\[P \vdash \langle e; e_2, (h, l) \rangle \rightarrow \langle e'; e_2, (h', l') \rangle \]

Complication:

does \(P, E, h \vdash e_2 : T_2 \) imply \(P, E, h' \vdash e_2 : T_2 \)?

Yes, because \(h \) changes only in a safe fashion:

\[
\begin{align*}
\text{if } h \ a &= \llbracket (C, fs) \rrbracket \text{ then } h' \ a &= \llbracket (C, fs') \rrbracket \\
\end{align*}
\]

The class of an object on the heap stays fixed
Definition

\[h \preceq h' \equiv \forall a \in C \text{ fs. } h \ a = \llbracket (C, fs) \rrbracket \implies (\exists fs'. h' \ a = \llbracket (C, fs') \rrbracket) \]

Lemma If \(P \vdash \langle e, (h, l) \rangle \rightarrow \langle e', (h', l') \rangle \) then \(h \preceq h' \).
Proof by rule induction on \(\rightarrow \).

Lemma If \(P, E, h \vdash e : T \) and \(h \preceq h' \) then \(P, E, h' \vdash e : T \).
Proof by rule induction on \(P, E, h \vdash e : T \).
Now single step subject reduction can be proved:

Thm If \(\text{wf-J-prog } P \) and \(P \vdash \langle e, (h, l) \rangle \rightarrow \langle e', (h', l') \rangle \) and \(P, E \vdash (h, l) \checkmark \) and \(P, E, h \vdash e : T \) then

\[\exists T'. \ P, E, h' \vdash e' : T' \land P \vdash T' \leq T. \]

Extension to \(\rightarrow^* \) needs preservation of conformance.
Preservation of state conformance

Lemma If $P \vdash \langle e, (h, l) \rangle \rightarrow \langle e', (h', l') \rangle$ and $P, E, h \vdash e : T$ and $P \vdash h \checkmark$ then $P \vdash h' \checkmark$.

Proof by rule induction on \rightarrow.

Lemma If $P \vdash \langle e, (h, l) \rangle \rightarrow \langle e', (h', l') \rangle$ and $P, E, h \vdash e : T$ and $P, h \vdash l (\leq) w E$ then $P, h' \vdash l' (\leq) w E$.

Proof by rule induction on \rightarrow.
Many step subject reduction

Thm If $\text{wf-J-prog } P$ and $P \vdash \langle e, s \rangle \rightarrow^* \langle e', s' \rangle$ and $P, E \vdash s \checkmark$ and $P, E, hp \ s \vdash e : T$ then

$\exists T'. P, E, hp \ s' \vdash e' : T' \land P \vdash T' \leq T$.

Proof by induction on the length of the reduction sequence, i.e. by rule induction on \rightarrow^*.
Preservation of \mathcal{D}

Lemma If $\text{wf-J-prog } P$ and $P \vdash \langle e, (h, l) \rangle \rightarrow \langle e', (h', l') \rangle$ and $\mathcal{D} e (\text{dom } l)$ then $\mathcal{D} e' (\text{dom } l')$.

Proof by rule induction on \rightarrow.
Irreducible expressions are values or exceptions:

Corollary If $\text{wf-J-prog } P$ and $P,E \vdash s \checkmark$ and $P,E \vdash e :: T$ and $\mathcal{D} e (\text{dom(lcl } s))$ and $P \vdash \langle e,s \rangle \rightarrow^* \langle e',s' \rangle$ and $\not\exists e'' s''$. $P \vdash \langle e',s' \rangle \rightarrow \langle e'',s'' \rangle$ then either

$\exists v. e' = \text{Val } v \land P,hp s' \vdash v : \leq T$ or

$\exists a. e' = \text{Throw } a \land a \in \text{dom } (hp s').$

Proof by many step subject reduction, preservation of \mathcal{D}, and progress.
What does type safety really tell us?

- If you trust the semantics: the type system is correct w.r.t. the semantics
- If you trust the type system: the semantics is complete w.r.t. the type system, no reduction rules are missing.
- If you don’t trust either: at least type system and semantics fit together
Completeness of the type system

Is the type system complete?
Is e well-typed if reduction of e does not get stuck?

No!

It is undecidable if reduction gets stuck.
Same argument as for undecidability of definite assignment.

Example: $\text{if}(true)\ true\ else\ \text{Val}\ (\text{Intg}\ 42)$

Decidable type systems for interesting (= undecidable) properties are necessarily incomplete.