Isar — A language for structured proofs
Apply scripts

• unreadable
Apply scripts

- unreadable
- hard to maintain
Apply scripts

- unreadable
- hard to maintain
- do not scale
Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!
Apply scripts versus Isar proofs

Apply script = assembly language program
Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments
Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

But: apply still useful for proof exploration
A typical Isar proof

proof
 assume $formula_0$
 have $formula_1$ by simp
 :
 have $formula_n$ by blast
 show $formula_{n+1}$ by \ldots
qed
A typical Isar proof

proof
 assume $formula_0$
 have $formula_1$ by simp
 :
 have $formula_n$ by blast
 show $formula_{n+1}$ by \ldots
qed

proves $formula_0 \Rightarrow formula_{n+1}$
Overview

- Basic Isar
- Propositional logic
- Predicate logic
Isar core syntax

\[
\text{proof} \quad = \quad \text{proof} \ [\text{method}] \ \text{statement}^* \ \text{qed} \\
| \quad \text{by} \ \text{method}
\]
Isar core syntax

proof = proof [method] statement* \text{qed}
\quad | \quad \text{by method}

method = (simp \ldots) \mid (blast \ldots) \mid (rule \ldots) \mid \ldots
Isar core syntax

proof = proof [method] statement* qed
 | by method

method = (simp ...) | (blast ...) | (rule ...) | ...

statement = fix variables (\wedge)
 | assume proposition (\implies)
 | [from name^+] (have | show) proposition proof
Isar core syntax

\[
\begin{align*}
\text{proof} & \ = \ \text{proof} \ [\text{method}] \ \text{statement}^* \ \text{qed} \\
& \quad | \ \text{by} \ \text{method} \\
\text{method} & \ = \ (\text{simp} \ldots) | (\text{blast} \ldots) | (\text{rule} \ldots) | \ldots \\
\text{statement} & \ = \ \text{fix} \ \text{variables} \quad (\land) \\
& \quad | \ \text{assume} \ \text{proposition} \quad (\implies) \\
& \quad | \ [\text{from name}^+] \ (\text{have} | \text{show}) \ \text{proposition} \ \text{proof} \\
& \quad | \ \text{next} \quad (\text{separates subgoals})
\end{align*}
\]
Isar core syntax

proof = proof [method] statement* qed
 | by method

method = (simp . . .) | (blast . . .) | (rule . . .) | . . .

statement = fix variables (∧)
 | assume proposition (⇒)
 | [from name+] (have | show) proposition proof
 | next (separates subgoals)

proposition = [name:] formula
Demo: propositional logic, introduction rules
Basic proof methods

Basic atomic proof:

by method
apply method, then prove all subgoals by assumption
Basic proof methods

Basic atomic proof:

by *method*
apply *method*, then prove all subgoals by assumption

Basic proof method:

rule \(\vec{a} \)
apply a rule in \(\vec{a} \);
Basic proof methods

Basic atomic proof:

by method
apply method, then prove all subgoals by assumption

Basic proof method:

rule \vec{a}
apply a rule in \vec{a};
if \vec{a} is empty: apply a standard elim or intro rule.
Basic proof methods

Basic atomic proof:

by method
apply method, then prove all subgoals by assumption

Basic proof method:

rule \vec{a}
apply a rule in \vec{a};
if \vec{a} is empty: apply a standard elim or intro rule.

Abbreviations:

. = **by** do-nothing

.. = **by** rule
Demo: propositional logic, elimination rules
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 \textbf{from \bar{a} have \textit{formula} proof}
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 \textit{from} \vec{a} \textit{have} \textit{formula} \textit{proof}

- \textit{proof} alone abbreviates \textit{proof} \textit{rule}
Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:

 \[
 \text{from } \vec{a} \text{ have } \text{formula } \text{proof}
 \]

• proof alone abbreviates proof rule

• rule: tries elim rules first (if there are incoming facts \(\vec{a}!\))
Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
 \textit{from } \vec{a} \textit{ have } \textit{formula } \textit{proof}

• \textit{proof} alone abbreviates \textit{proof } \textit{rule}

• \textit{rule}: tries elim rules first (if there are incoming facts \vec{a}!)

• \textit{from } \vec{a} \textit{ have } \textit{formula } \textit{proof } (\textit{rule } \textit{rule})
Elimination rules / forward reasoning

• Elim rules are triggered by facts fed into a proof:
 \[\text{from } \vec{a} \text{ have formula proof} \]
• proof alone abbreviates proof rule
• rule: tries elim rules first (if there are incoming facts \(\vec{a} \)!)
• from \(\vec{a} \) have formula proof (rule rule)
 \(\vec{a} \) must prove the first \(n \) premises of rule,
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 \(\text{from } \vec{a} \text{ have } \text{formula } \text{proof} \)
- proof alone abbreviates proof rule
- rule: tries elim rules first (if there are incoming facts \(\vec{a}! \))
- from \(\vec{a} \) have formula proof (rule rule)
 \(\vec{a} \) must prove the first \(n \) premises of rule, in the right order
Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof:
 `from \(\vec{a} \) have \(\text{formula} \) proof`

- `proof` alone abbreviates `proof rule`

- `rule`: tries elim rules first (if there are incoming facts \(\vec{a}! \))

- `from \(\vec{a} \) have \(\text{formula} \) proof (rule rule)`
 \(\vec{a} \) must prove the first \(n \) premises of `rule`, in the right order
 the others are left as new subgoals
Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>this</td>
<td>the previous proposition proved or assumed</td>
</tr>
<tr>
<td>then</td>
<td>from this</td>
</tr>
<tr>
<td>thus</td>
<td>then show</td>
</tr>
<tr>
<td>hence</td>
<td>then have</td>
</tr>
<tr>
<td>with (\vec{a})</td>
<td>from (\vec{a}) this</td>
</tr>
</tbody>
</table>
First the what, then the how:

(have|show) proposition using facts
First the what, then the how:

\[(\text{have}|\text{show}) \text{ proposition using facts} \]

\[=\]

\[\text{from facts (have|show) proposition}\]
First the what, then the how:

\[(\text{have}|\text{show}) \text{ proposition } \textit{using} \text{ facts} = \text{from facts } (\text{have}|\text{show}) \text{ proposition}\]

Can be mixed:

\[\text{from major-facts } (\text{have}|\text{show}) \text{ proposition } \textit{using} \text{ minor-facts}\]
First the what, then the how:

\[(\text{have}|\text{show}) \text{ proposition using facts} = \text{from facts (have|show) proposition}\]

Can be mixed:

\[\text{from major-facts (have|show) proposition using minor-facts} = \text{from major-facts minor-facts (have|show) proposition}\]
Demo: avoiding duplication
Schematic term variables

?A
Schematic term variables

?A

• Defined by pattern matching:

\[x = 0 \land y = 1 \text{ (is } ?A \land _) \]
Schematic term variables

?A

• Defined by pattern matching:

\[x = 0 \land y = 1 \ (\text{is} \ \ ?A \land _) \]

• Predefined: \(?\text{thesis} \)
 The last enclosing show formula
Demo: predicate calculus
Syntax:

```
obtain variables where proposition proof
```
Mixing proof styles

from . . .

have . . .

apply - make incoming facts assumptions

apply(. . .)

::

apply(. . .)

done
Overview

- Case distinction
- Induction
- Calculational reasoning
Case distinction
Boolean case distinction

proof cases
 assume \(formula \)
 :
 next
 assume \(\neg formula \)
 :
qed
Boolean case distinction

proof cases

assume \(\text{formula} \)

:

next

assume \(\neg \text{formula} \)

:

qed

proof (cases \(\text{formula} \))

case True

:

next

case False

:

qed
Boolean case distinction

proof cases
 assume \(\text{formula} \)
 :
next
 assume \(\neg \text{formula} \)
 :
qed

proof \((\text{cases } \text{formula})\)
 case \(\text{True}\)
 :
next
 case \(\text{False}\)
 :
qed

\[\begin{align*}
\text{case } \text{True} & \equiv \\
\text{assume } \text{True}: \text{formula}
\end{align*}\]
Demo: case distinction
Datatype case distinction

proof \((\text{cases } \text{term})\)

\begin{align*}
\text{case } \text{Constructor}_1 \\
\vdots \\
\text{next} \\
\vdots \\
\text{next} \\
\text{case } (\text{Constructor}_k \vec{x}) \\
\vdots \vec{x} \vdots
\end{align*}

qed
Datatype case distinction

proof (cases \textit{term})

\begin{align*}
\text{case } \text{Constructor}_1 \\
\vdots \\
\text{next} \\
\vdots \\
\text{next} \\
\text{case } (\text{Constructor}_k \vec{x}) \\
\vdots \vec{x} \vdots \\
\text{qed}
\end{align*}

\begin{align*}
\text{case } (\text{Constructor}_i \vec{x}) & \equiv \\
\text{fix } \vec{x} \text{ assume } \text{Constructor}_i : \text{term} = (\text{Constructor}_i \vec{x})
\end{align*}
Induction
Overview

• Structural induction
• Rule induction
• Induction with recdef
Structural induction for type nat

show $P(n)$
proof (induction n)
 case 0
 ...
 ...
 show ?case
next
 case (Suc n)
 ...
 ... n ...
 show ?case
qed
Structural induction for type nat

\[
\begin{align*}
\text{show } & P(n) \\
\text{proof } & (\text{induction } n) \\
\text{case } & 0 \\
& \equiv \text{ let } ?\text{case} = P(0) \\
& \ldots \\
& \text{show } ?\text{case} \\
\text{next} \\
\text{case } & (\text{Suc } n) \\
& \ldots \\
& \ldots n \ldots \\
& \text{show } ?\text{case} \\
\text{qed}
\end{align*}
\]
Structural induction for type nat

show \(P(n) \)
proof (induction \(n \))
 case \(0 \) \(\equiv \) let ?case = \(P(0) \)
 ... show ?case
next
 case (Suc \(n \)) \(\equiv \) fix \(n \) assume Suc: \(P(n) \)
 let ?case = \(P(\text{Suc } n) \)
 ... \(n \) ...
 show ?case
qed
Demo: structural induction
Structural induction with \Rightarrow and \wedge

\[
\begin{align*}
\text{show } & \forall x. A(n) \Rightarrow P(n) \\
\text{proof (induction } n) & \\
\text{ case 0 } & \\
\ldots & \\
\text{ show } & \text{ ?case} \\
\text{ next } & \\
\text{ case } (Suc n) & \\
\ldots & \\
\ldots & n \\
\ldots & \\
\text{ show } & \text{ ?case} \\
\text{ qed}
\end{align*}
\]
Structural induction with \(\implies\) and \(\wedge\)

show \(\forall x. A(n) \implies P(n)\)

proof (induction \(n\))
 case 0

 ...
 show ?case
 next
 case \((\text{Suc } n)\)

 ...
 ... \(n\) ...

 ...
 show ?case
qed
Structural induction with \implies and \land

show $\land x. A(n) \implies P(n)$

proof (induction n)
 case 0
 ...
 show ?case

next
 case $(\text{Suc } n)$
 ...
 ... n ...
 ...
 show ?case

qed
A remark on style

• case \((\text{Suc } n) \ldots \text{show } \texttt{?case} \) is easy to write and maintain
A remark on style

• case (Suc n) ... show ?case is easy to write and maintain

• fix n assume formula ... show formula' is easier to read:
 • all information is shown locally
 • no contextual references (e.g. ?case)
Demo: structural induction with \Rightarrow and \land
Rule induction
Inductive definition

inductive S

intros

$\text{rule}_1 : [s \in S; A] \implies s' \in S$

\vdots

$\text{rule}_n : \ldots$
Rule induction

show $x \in S \implies P(x)$

proof (induct rule: $S.induct$)

 case $rule_1$

 ...

 show $?case$

next

 ...

next

 case $rule_n$

 ...

 show $?case$

qed
Implicit selection of induction rule

assume $A: x \in S$

:\

show $P(x)$

using A proof *induct*

:\

qed
Implicit selection of induction rule

assume \(A: x \in S \)

\[\vdots \]

show \(P(x) \)

using \(A \) proof \textit{induct}

\[\vdots \]

qed
Renaming free variables in rule

\[\text{case } (\text{rule}_i \ x_1 \ldots \ x_k) \]

Renames the (alphabetically!) first \(k \) variables in \(\text{rule}_i \) to \(x_1 \ldots x_k \).
Demo: rule induction
Definition:

\texttt{recdef } \texttt{f}

:
Definition:
\textit{recdef} \ f

Proof:
\textit{show} \ldots \ f(\ldots) \ldots
\textit{proof} (\textit{induction} \ \! x_1 \ldots \ x_k \ \textit{rule}: \ f.\textit{induct})
Induction with recdef

Definition:

recdef f

Proof:

show ... $f(...)$...

proof (induction $x_1 \ldots x_k$ rule: f.induct)

 case 1

 :
Induction with recdef

Definition:
recdef f
:

Proof:
show \ldots \ f(\ldots) \ldots
proof (induction x_1 \ldots x_k \ rule: f.induct)
 case 1
 :

Case \ i \ refers\ to\ equation \ i \ in\ the\ definition\ of \ f
Induction with recdef

Definition:
recdef f
:

Proof:
show ... $f(...)$...
proof (induction $x_1 \ldots x_k$ rule: $f.induct$)
 case 1
 :

Case i refers to equation i in the definition of f
More precisely: to equation i in $f.simps$
Demo: induction with recdef
Calculational Reasoning
Overview

• Accumulating facts
• Chains of equations and inequations
moreover

have formula_1 . . .
moreover
have formula_2 . . .
moreover
.
moreover
have formula_n . . .
ultimately show . . .
— pipes facts formula_1 . . . formula_n into the proof
proof
.

moreover
also

have \(t_0 = t_1 \ldots \).
also
have \(\ldots = t_2 \ldots \).
also
\[
\vdots
\]
also
have \(\ldots = t_n \ldots \).
also

have \(t_0 = t_1 \ldots \)
also
have \(\ldots = t_2 \ldots \)
also
\vdots
also
have \(\ldots = t_n \ldots \)
also
also

\[\text{have } t_0 = t_1 \ldots \]

also

\[\text{have } \ldots = t_2 \ldots \]

\[\equiv t_1 \]

also

\[\vdots \]

also

\[\text{have } \ldots = t_n \ldots \]

\[\equiv t_{n-1} \]
also

have $t_0 = t_1 \ldots$
also
have $\ldots = t_2 \ldots$
also
\vdots
also
have $\ldots = t_n \ldots$

finally show \ldots
— pipes fact $t_0 = t_n$ into the proof
proof
\vdots
“...” is merely an abbreviation
Demo: moreover and also
Variations on also

Transitivity:

have $t_0 = t_1 \ldots$
also have $\ldots = t_2 \ldots$
also/finally $\sim\rightarrow$
Variations on also

Transitivity:

have $t_0 = t_1$
also have . . . = t_2
also/finally $\sim t_0 = t_2$
Variations on also

Transitivity:

\begin{align*}
\text{have } & t_0 = t_1 \ldots \\
\text{also have } & \ldots = t_2 \ldots \\
\text{also/finally } & \leadsto t_0 = t_2
\end{align*}

Substitution:

\begin{align*}
\text{have } & P(s) \ldots \\
\text{also have } & s = t \ldots \\
\text{also/finally } & \leadsto
\end{align*}
Variations on also

Transitivity:

\(\text{have } t_0 = t_1 \ldots \)
\(\text{also have } \ldots = t_2 \ldots \)
\(\text{also/finally } \leadsto t_0 = t_2 \)

Substitution:

\(\text{have } P(s) \ldots \)
\(\text{also have } s = t \ldots \)
\(\text{also/finally } \leadsto P(t) \)
Transitivity:

have \(t_0 \leq t_1 \ldots \)

also have \(\ldots \leq t_2 \ldots \)

also/finally \(\sim \)
Transitivity:

- have $t_0 \leq t_1 \ldots$
- also have $\ldots \leq t_2 \ldots$
- also/finally $\sim t_0 \leq t_2$
Transitivity:

have $t_0 \leq t_1 \ldots$
also have $\ldots \leq t_2 \ldots$
also/finally $\sim \Rightarrow t_0 \leq t_2$

Substitution:

have $r \leq f(s) \ldots$
also have $s < t \ldots$
also/finally $\sim \Rightarrow$
Transitivity:

have $t_0 \leq t_1 \ldots$
also have $\ldots \leq t_2 \ldots$
also/finally $\sim t_0 \leq t_2$

Substitution:

have $r \leq f(s) \ldots$
also have $s < t \ldots$
also/finally $\sim (\bigwedge x. x < y \implies f(x) < f(y)) \implies r < f(t)$
From $=$ to \leq and $<$

Transitivity:

have $t_0 \leq t_1$. . .
also have . . . $\leq t_2$. . .
also/finally $\leadsto t_0 \leq t_2$

Substitution:

have $r \leq f(s)$. . .
also have $s < t$. . .
also/finally $\leadsto (\land x. x < y \implies f(x) < f(y)) \implies r < f(t)$

Similar for all other combinations of $=$, \leq and $<$.
To view all combinations in Proof General:
Isabelle/Isar → Show me → Transitivity rules
Demo: monotonicity reasoning