Symbolic model checking of security protocols

Hauptseminar Perlen der Informatik

Felix Weninger

TU München

August 1, 2006
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Challenges</td>
</tr>
<tr>
<td>Modelling a state transition system</td>
</tr>
<tr>
<td>Ground models</td>
</tr>
<tr>
<td>Basic definitions</td>
</tr>
<tr>
<td>Protocol specification</td>
</tr>
<tr>
<td>State reachability</td>
</tr>
<tr>
<td>Lazy models</td>
</tr>
<tr>
<td>Lazy states</td>
</tr>
<tr>
<td>Constraint reduction</td>
</tr>
<tr>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Security protocols

- Interaction of **honest agents** (Alice, Bob, merchant, ...) and an **intruder** (Eve)
- Exchange of **messages** over a **network**
- Use of **cryptography**
- Security of protocols = Achievement of defined **goals** (e.g. message secrecy)
Model checking of security protocols

- Formalization as state transition system:
 - states represent knowledge of agents
 - transitions represent message exchange, according to protocol rules
- Infinity of messages can be generated
- Security problem is *undecidable* (∼ co-re)
- “State explosion“

Possible ideas:

- Introduction of variables
- Lazy evaluation

→ symbolic model checking
Agents

Honest agents:
- Behaviour follows predefined rules
- Cannot break cryptography, e.g. determine the inverse of a key (perfect cryptography assumption)

Intruder:
- Can pose as any honest agent
- Enhances knowledge by intercepting messages
- Maintains knowledge across transitions (monotonicity)
- Actively generates and sends messages generated from his knowledge
- Cannot break cryptography either
Introduction

Challenges

Modelling a state transition system

Ground models

Basic definitions

Protocol specification

State reachability

Lazy models

Lazy states

Constraint reduction

Conclusion
Messages

- Use of context-free grammar for formalization of protocols
- Grammar = Input format of our model checking software

Paradigm: “Everything is a message“ – untyped language to be able to detect type flaw attacks!

\[
\begin{align*}
Msg & ::= \text{AtomicMsg} | \text{ComposedMsg} \\
\text{AtomicMsg} & ::= C | V \\
\text{ComposedMsg} & ::= \langle \text{Msg}, \text{Msg} \rangle | \text{Msg}(\text{Msg}) | \\
& \quad \text{Msg}|_{\text{Msg}} | \text{Msg} \parallel_{\text{Msg}} | \text{Msg}^{-1}
\end{align*}
\]

with \(C \) and \(V \) being arbitrary countable sets of constant and variable identifiers.
Intruder capabilities

Dolev–Yao intruder: For set of messages M, $\mathcal{DY}(M)$ is the closure of M under

- **message generation:** composition, encryption, function application
- **message analysis:** decomposition, decryption (requires key)

Example 1

\[
\begin{align*}
\frac{m_1 \in \mathcal{DY}(M) \quad m_2 \in \mathcal{DY}(M)}{m_1 | m_2 \in \mathcal{DY}(M)} & \quad G_{\text{acrypt}} \\
\frac{m_1 | m_2 \in \mathcal{DY}(M) \quad m_2^{-1} \in \mathcal{DY}(M)}{m_1 \in \mathcal{DY}(M)} & \quad A_{\text{acrypt}} \\
\frac{m_1 | m_2^{-1} \in \mathcal{DY}(M) \quad m_2 \in \mathcal{DY}(M)}{m_1 \in \mathcal{DY}(M)} & \quad A^{-1}_{\text{acrypt}}
\end{align*}
\]
Ground terms and substitutions

Definition 2
A term is ground iff it contains no variables.

Definition 3
A substitution σ is a mapping $V \rightarrow L(Msg)$. We denote by $\text{dom}(\sigma)$ the set of variables that are substituted. A substitution is ground iff $\sigma(v)$ is ground for every $v \in \text{dom}(\sigma)$. We denote by $t\sigma := \sigma(t)$ the application of σ to an arbitrary term t.
Introduction

Challenges

Modelling a state transition system

Ground models

- Basic definitions

Protocol specification

- State reachability

Lazy models

- Lazy states

- Constraint reduction

Conclusion
States

States are nonempty finite sets of positive facts.

\[
\text{State} ::= \text{StateFact}. \text{StateFact}^* \\
\text{StateFact} ::= \text{agentState}(\text{Msg}) | \text{PosFact} \\
\text{PosFact} ::= \text{intKnows}(\text{Msg}) | \text{seen}(\text{Msg}, \text{Msg}) | \ldots
\]
Transitions

\[\text{agentState}(B, 1) \]
Transitions

agentState(B, 2, M₁)
Transitions

Network

agentState(B, 2, M1)
Transitions

agentState(\(B, 2, M_1\))

3 steps in 1 transition!
Transitions

\[\text{Intruder} = \text{Network!} \]
Transitions
Transitions

A

DY(IK)

IK

M₁

B

M₁

Intruder

Protocol specification
Transitions

Diagram showing transitions involving symbols and processes labeled as M_1, IK, $DY(IK)$, and M'_1. The diagram illustrates the interaction between A and B in the context of intruder models.
Transitions

\[
DY(IK) \\
M_1' \\
IK \\
M_1 \\
M_1 \\
M_1'
\]

A \rightarrow B \rightarrow A
Transitions
Transitions

Diagram showing the interaction between A, B, and the Intruder model. The transition DY(IK) is highlighted, indicating a specific interaction or state change in the protocol specification.
Step compression

- 3 steps in 1 transition:
 - honest agent receives message from intruder
 - honest agent changes state (≈ message processing)
 - honest agent sends message to intruder

- Intruder knowledge “grows“ by the outgoing message (set semantics!)

- No need to specify senders and recipients

→ Simpler rule format and less rules!
Example: E-mail exchange

Alice sends Bob a signed and encrypted message; Bob checks Alice’s signature and decrypts the message.

Initial state:

\[
\begin{align*}
I &= \text{agentState}(\text{roleA, step1, Hi, ka, } kb^{-1}) . \\
&\quad \text{agentState}(\text{roleB, step1, ka}^{-1}, kb) . \\
&\quad \text{intKnows}(ka^{-1}, kb^{-1}, \text{dummy})
\end{align*}
\]

send rule:

\[
\begin{align*}
\text{msgTransit}(\text{dummy}) . \\
&\quad \text{agentState}(\text{roleA, step1, M, KA, KB}^{-1}) \\
&\Rightarrow \text{agentState}(\text{roleA, step2, M, KA, KB}^{-1}) . \\
&\quad \text{msgTransit}(M|_{KB^{-1}}, \text{md5}(M)|_{KA})
\end{align*}
\]
E-mail exchange (2)

Substitution:

\[\sigma = \{ M \mapsto "\text{Hi}" , \ KA \mapsto ka , \ KB \mapsto kb \} \]

Successor state:

\[S = \text{agentState}(\text{roleA}, \text{step2}, "\text{Hi}", ka, kb^{-1}) \cdot \text{agentState}(\text{roleB}, \text{step1}, ka^{-1}, kb) \cdot \text{intKnows}(ka^{-1}, kb^{-1}, \text{dummy}, "\text{Hi}"|_{kb^{-1}}, \text{md5}("\text{Hi}")|_{ka}) \]

receive rule:

\[\text{msgTransit}(M|_{KB^{-1}}, \text{md5}(M)|_{KA}) \cdot \text{agentState}(\text{roleB}, \text{step1}, KA^{-1}, KB) \Rightarrow \text{agentState}(\text{roleB}, \text{step2}, M|_{KB^{-1}}, KB, \text{md5}(M)|_{KA}, KA^{-1}, KB) \cdot \text{msgTransit}(\text{dummy}) \]
Rules

Rules describe possible state transitions: “LHS applicable to the current state ⇒ system changes state to RHS“

Rule ::= LHS ⇒ RHS
LHS ::= msgTransit(Msg) . agentState(Msg) (. PosFact)* (. NegFact)* Condition
RHS ::= agentState(Msg) . msgTransit(Msg) (. PosFact)*

NegFact ::= ¬PosFact
Condition ::= (\∧ Msg ≠ Msg)*

- Rule format corresponds to concept of step compression
- Can model a wide range of protocols
- Insert dummy messages if needed
Protocols

Observation: LHS of rules can be used to model attack situations:
agentState(...) * msgTransit(...) * intKnows(secret)

Definition 4
A protocol is a triple \((I, R, A)\) where

- \(I\) is a ground initial state,
- \(R\) a set of rules,
- \(A\) is a set of LHS that describe attack situations

and the following holds for every rule in \(R\):

- no new variables are introduced on the RHS
- all variables in conditions and negative facts must occur in positive facts
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Ground models</th>
<th>Lazy models</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenges</td>
<td>Basic definitions</td>
<td>Constraint reduction</td>
<td></td>
</tr>
<tr>
<td>Modelling a state transition system</td>
<td>Protocol specification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ground models

- Basic definitions
- Protocol specification

State reachability

Lazy models

- Lazy states
- Constraint reduction

Conclusion
Rule applicability

\[\text{msgTransit}(m_1) \cdot \text{agentState}(m_2) \cdot P_1 \cdot N_1 \land C \]
\[\implies \text{agentState}(m_3) \cdot \text{msgTransit}(m_4) \cdot P_2 \]

Formalize LHS semantics by a function that yields all substitutions under which rule \(lhs \implies rhs \) can be applied to ground state \(S \):

\[
\text{applicable}_{lhs}(S) = \{ \sigma \mid \\
ground(\sigma) \land \text{dom}(\sigma) = \text{vars}(m_1) \cup \text{vars}(m_2) \cup \text{vars}(P_1) \land \\
\{ m_1 \sigma \} \cup \{ m \sigma \mid \text{intKnows}(m) \in P_1 \} \\
\subseteq \mathcal{D} \mathcal{Y}(\{ m \mid \text{intKnows}(m) \in S \}) \land \\
\text{agentState}(m_2 \sigma) \in S \land \overline{P_1} \sigma \subseteq S \land \\
(\forall f. \neg f \in N_1 \implies f \sigma \notin S) \land \sigma \models C \\
\}
\]

where \(\overline{P_1} \) is \(P_1 \) without \text{intKnows}() facts.
Step function

\[\text{msgTransit}(m_1) \cdot \text{agentState}(m_2) \cdot P_1 \cdot N_1 \land C \Rightarrow \text{agentState}(m_3) \cdot \text{msgTransit}(m_4) \cdot P_2 \]

Formalize RHS semantics by step function:

\[
\text{step}_{lhs\Rightarrow rhs}(S) = \{ S' \mid \exists \sigma. \\
\sigma \in \text{applicable}_{lhs}(S) \land \\
S' = (S \setminus (\text{agentState}(m_2\sigma) \cup \overline{P_1\sigma})) \\
\cup \{ \text{agentState}(m_3\sigma), \text{intKnows}(m_4\sigma), P_2\sigma \}\}
\]
Reachability

For a protocol (I, R, A) and a state S, we define a successor function:

$$\text{succ}_R(S) = \bigcup_{r \in R} \text{step}_r(S)$$

The ground model of the protocol is the set of states that are reachable from the initial state:

$$\text{reach}(I, R) = \bigcup_{n \in \mathbb{N}} \text{succ}_R^n(I)$$

A protocol is secure iff

$$\text{applicable}_a(S) = \emptyset \ \forall a \in A, S \in \text{reach}(I, R).$$
Discussion

- Attack rule integrity:

 \[
 \text{agentState}(\text{roleA}, \text{step2}, M, \ldots) \cdot \text{agentState}(\text{roleB}, \text{step2}, DM, \ldots) \land M \neq DM
 \]

 ... does not work as intended since $M \neq DM$ is true for $DM \equiv \text{“Hi“}|_{b-1}|_b$ and $M \equiv \text{“Hi“}$ (free algebra assumption)

- What about $md5(M_1) \neq md5(M_2)$?

- In general: infinity of possible substitutions due to DY intruder!

 (E-mail exchange without signature: substitution of arbitrary message possible!)
Introduction
 Challenges
 Modelling a state transition system

Ground models
 Basic definitions
 Protocol specification
 State reachability

Lazy models
 Lazy states
 Constraint reduction

Conclusion
Motivation

Observation: Instantiation of message variables is often irrelevant!

Idea: Don’t branch into different states for possible messages, but keep message variables and store constraints about messages generated during transition!

\[
\text{msgTransit}(M|_k)
\]

\[
IK = \{m_1, m_2, k\}
\]

\[
\cdots m_1 / M
\]

\[
\cdots m_2 / M \text{from}(M(m_1, m_2, k)} \)
\]
Constraints

Definition 5
A constraint is of the form from \((T, IK)\) where

- \(T\) is the set of message terms to be generated (according to \(DY\) rules);
- \(IK\) is a set of message terms, representing intruder knowledge.

A constraint from \((T, IK)\) is satisfiable if there exists a ground substitution \(\sigma\) such that \(T\sigma \subseteq DY(IK\sigma)\).
Lazy states

- Facts may contain variables
- Negative facts (and conditions) cannot be evaluated if they contain variables
 \rightarrow store them in inequalities of the form $m_1 \neq m_2$, $m_1, m_2 \in L(Msg)$

Definition 6
A lazy state is a triple (P, C, N), where P is a set of (not necessarily ground) facts, C is a set of constraints and N is a conjunction of disjunctions of inequalities.
Crash course: Unification

Goal: For two terms t_1 and t_2, find σ s.t. $t_1\sigma = t_2\sigma$.

Example 7

$t_1 := f(A)$, $t_2 := f(g(B))$ unify under $\sigma_1 := \{A \mapsto g(B)\}$ and $\sigma_2 := \{A \mapsto g(b), B \mapsto b\}$.

- In the example, σ_1 is the most general unifier (mgu) because it substitutes less free variables.
- **Matching:** The special case where one of t_1 and t_2 is ground (cf. applicability of rules in ground model)
Adaption of state transitions

\[
\text{msgTransit}(m_1) \cdot \text{agentState}(m_2) \cdot P_1 \cdot N_1 \land C \\
\Rightarrow \text{agentState}(m_3) \cdot \text{msgTransit}(m_4) \cdot P_2
\]

Rule applicability to lazy states:

\[
\text{applicable}_{lhs}(P, C, N) = \{(\sigma, C', N') | \}
\]
\[
\text{dom}(\sigma) \subseteq \text{vars}(m_1) \cup \text{vars}(m_2) \cup \text{vars}(P_1) \cup \text{vars}(P, C, N) \land
\]
\[
C' = C \cup \text{from}(m_1 \cup \{m | \text{intKnows}(m) \in P_1\}, \}
\]
\[
\{i | \text{intKnows}(i) \in P\}) \land
\]
\[
\text{agentState}(m_2\sigma) \in P_\sigma \land \overline{P_1}\sigma \subseteq P_\sigma \land
\]
\[
N' = N_\sigma \land \bigwedge \phi \land \text{Cond}\sigma
\]
\[
\phi \in \text{subCont}(N_1\sigma, P\sigma)
\]

where \(\overline{P_1}\) is \(P_1\) without \(\text{intKnows}\) facts. where

\(\text{subCont}(N_1\sigma, P\sigma)\) is a formula that excludes all unifiers under which a positive fact in the state occurs in the negative facts in the rule.
Definitions of successor function, reachability and protocol security: straightforward extension of ground model.

Theorem 8 (Lazy reachability theorem, informal)

The set of reachable ground states is exactly the set of reachable lazy states under substitutions that satisfy their constraints and inequalities.

Implementation tasks:

- Compute lazy successor states by unification with mgu → finite branching
- Prune lazy states with unsatisfiable constraints or inequalities
- Check remaining states for applicability of attack-rules

Problem: How to check satisfiability?
Simple constraints

- A constraint from \((T, IK)\) is simple iff \(T \subseteq V\).
- Simple constraints are always satisfiable.
- For a simple constraint set \(C\) and a satisfiable set of inequalities \(N\), there is always a substitution that satisfies both \(C\) and \(N\).
A motivating example

Observation: Constraints can be simplified!

Example 9

\[
\text{from } (\{ h(M)|_{A^{-1}}, M|_{a^{-1}} \} , \{ a^{-1} \parallel b, b, h \}) \\
\rightarrow \text{from } (\{ \ldots \} , \{ a^{-1}, a^{-1} \parallel b, b, h \}) \cup \text{from } (\{ b \} , \{ a^{-1} \parallel b, b, h \}) \\
\rightarrow \text{from } (\{ h(M), A^{-1}, M, a^{-1} \} , \{ \ldots \}) \\
\rightarrow \text{from } (\{ h, M, a^{-1} \} , \{ \ldots \}) \\
\rightarrow \text{from } (\{ M \} , \{ \ldots \})
\]
The constraint reduction technique

- **Generation rules:** reduce the set of terms to be generated
- **Analysis rules:** “normalize“ intruder knowledge
- **Reduction step:** $(C_1, σ_1) \vdash (C_2, σ_2)$, where $σ_2$ extends $σ_1$
- **Goal:** $(C_0, id) \vdash^n (C_n, σ_n)$ and C_n is simple
- $σ$ is extended by means of unification
- In general different outcomes $(C_n, σ_n)$ are possible

Theorem 10 (Correctness and completeness, informal)

Constraint reduction reduces every set of constraints to (a set of) constraint sets where every constraint is simple or unsatisfiable, preserving the set of satisfying substitutions.
To do

- Decidability?
- Search strategy
 - Reachability and constraint satisfiability are independent
 - Constraint reduction may lead to case splits
 - Goal: Combine constraint reduction and search for reachable states in efficient manner, without excluding solutions
- Symbolic sessions
 - Agents can pose as other agents (man-in-the-middle attack)
 - Enumeration of all possibilities is costly
 - Idea: Introduce variables for roles and let the lazy model do the work!
The techniques in this talk have been used to implement the model checker OFMC.

OFMC uses a high-level protocol specification language (HLPSL).

In a test suite of 37 flawed industrial-grade protocols, OFMC generates attack traces within seconds on a standard PC.

OFMC found a previously unknown security flaw in the Siemens H.503 mobile communication protocol, which caused Siemens to revise the protocol.