Finite Model Generation

Just like programs, formal specifications are often wrong in the first attempt. So, instead of trying a proof (say, using resolution or the sequent calculus), we may first want to find out if $\neg c$ is satisfiable. If it is, then c is invalid and we should not bother proving it. Furthermore, the model for $\neg c$ can give us hints about the bug.

This project is about automatic model generation. You will develop a procedure that, given a first-order sentence p, searches for a finite model M such that $M \models p$. If we are interested in proving c, we can search for models of $\neg c$ to make sure that there are none.

The general idea is to transform a first-order sentence p into a propositional formula f_p, such that f_p is propositionally satisfiable iff p has a model of size n, where n is a not-too-large natural number. We can then use SAT solving to construct a model of p from a satisfying valuation.¹

Exercise 2.1 Translating first-order logic without functions

At first we consider only formulas that do not contain function symbols, e.g.,

$$p_1 = (\forall x. P(x)) \Rightarrow (\exists x. P(x)).$$

a) Implement a function

\[
\text{prop_translate} : \text{int} \rightarrow \text{fol formula} \rightarrow \text{prop formula}
\]

such that \(\text{prop_translate} n p\) returns a propositional formula p' that is satisfiable iff p has a model of size n.

For example, \(\text{prop_translate} 3 p_1\) should produce something like $\left(\bigwedge_{0 \leq i < 3} P_i\right) \Rightarrow \left(\bigvee_{0 \leq i < 3} P_i\right)$, where P_0, P_1, P_2 are propositional variables.

b) Implement a function \(\text{find_rel_model}\) that constructs a model M from a satisfying valuation for p', such that $M \models p$.

c) Extend your implementation, such that it only produces normal models. A model M is called normal iff the interpretation $=_M$ of the relation symbol $=$ is the normal equality on D_M.

¹If you haven’t done the first project, you can take a SAT solver that produces a satisfying valuation from the solution of that project.
Exercise 2.2 Compiling away functions

In order to be able to handle functions as well, we represent them as relations. For each \(n \)-ary function \(f \) we introduce an \((n + 1)\)-ary relation \(F \), such that \(F(x_1, \ldots, x_n, y) \) models that \(f(x_1, \ldots, x_n) = y \).

a) When translating functions to relations we must make sure that the relations we produce really represent functions. Find suitable first-order formulas expressing that a relation \(F \) behaves like a function.

Hint: Make sure that your formulas map to a reasonable CNF when translated to propositional logic.

b) Implement a translation that removes functions and replaces them by relations.

For example,
\[
P(f(x), g(h(y)))
\]
should be translated to
\[
\forall z_1 z_2 z_3. F(x, z_1) \Rightarrow H(y, z_2) \Rightarrow G(z_2, z_3) \Rightarrow P(z_1, z_3).
\]

c) Using the components that you have, write a function
\[
\text{find_model} : \text{int} \rightarrow \text{fol formula} \rightarrow \text{int model option}
\]
that constructs finite (normal) models for arbitrary first-order formulas.

Here, ‘a model abbreviates ‘a list * (string → ‘a list → ‘a) * (string → ‘a list → bool), the type of finite models with domain from ‘a.

Also provide a function \(\text{refute} \) that searches for countermodels for a conjecture \(c \).

d) Specify soundness and completeness for \(\text{find_model} \).

Exercise 2.3 Experiments

Note: Since our refutation algorithm is quite naive, it will only handle small examples successfully. Don’t expect too much if you do your own experiments.

a) Use \(\text{refute} \) to show that the cancellation law \(x + z = y + z \Rightarrow x = y \) does not hold for monoids.

b) Write a function
\[
\text{min_size_axiom} : \text{int} \rightarrow \text{fol formula}
\]
such that for any \(n > 0 \), \(\text{min_size_axiom} \) \(n \) has no model of size \(n \), but one of size \(n + 1 \).

c) Show that the following algorithm is not a decision procedure for first-order logic:

Given a conjecture \(c \), run two processes in parallel: The first process tries to prove \(c \) using resolution, the second process tries to refute \(c \) by searching for countermodels of increasing size. When any of the processes has terminated, we know if \(c \) is valid.
Coding and Documentation Guidelines

- Follow the style of coding that you find in the book. You can also use any pieces of the existing code base, in particular the library.
- Keep your code purely functional. You will not need any imperative features of OCaml.
- Do not do low-level optimizations. Always prefer clarity and conciseness over efficiency.
- Find a suitable way of documenting your implementation. This can be comments in the code, a separate text, or a text that includes code snippets as you find it in the book.
- Keep in mind that extensive comments cannot make up for bad code. On the other hand, clear and readable code can make many comments obsolete.

Recommended setup for this project:

```
#use "init.ml";;          (* load everything *)
In case you like to use the solution of the previous project, add:
#use "sudoku.ml";;
#use "proj1.ml";;
```